
jHiccup:
Open Source Java Performance
Measurement Tool
Measures jitter or ‘hiccups’ associated with the
Java platform

WHAT IS JHICCUP?
jHiccup is an open source tool designed to measure the pauses and stalls (or “hiccups”)

associated with an application’s underlying Java runtime platform. The new tool captures the

aggregate effects of the Java Virtual Machine (JVM), operating system, hypervisor (if used),

power management and hardware on application stalls and response time.

jHiccup allows developers, systems operators and performance engineers to easily create and

analyze response time profiles, and to clearly identify whether causes of application delays

reside in the application code or in the underlying runtime platform. jHiccup is completely

transparent and non-intrusive to the application, has zero performance overhead in operation,

and is compatible with all Java applications using any JVM.

HOW DOES JHICCUP WORK?
The jHiccup tool is focused on a very simple thing - showing whether or not your software stack

(which includes your JVM) runs continuously. jHiccup shows graphically via ‘Hiccup Charts’ just

how responsive the runtime platform really is.

jHiccup is actually very simple, and you can use it with any Java application on any JVM

and any platform (Sun, IBM, Windows, MAC, etc.) The tool runs as a background thread and

measures the time it takes to do nothing. It sleeps for 1 msec, then wakes up and checks

whether it has actually been longer than 1 msec since it went to sleep. If it was, the tool

records the amount of lag. So, for example, if jHiccup finds it was 500 msec since it went to

sleep, that probably means that every thread experienced the same pause.

WHY USE JHICCUP?
By understanding the pauses associated with the underlying platform, IT organizations can

better isolate latency and delays and the contributing components. jHiccup can also be used

to compare JVMs, collectors and to identify stalls in the underlying platform due to scheduler

delays, cron jobs or other system-level interruptions.

PRODUCT
DATA SHEET

j H I C C U P A D VA N TA G E S

❯	� Works with any Java application

on any JVM

❯	� Runs as a background thread

❯	� Allows you to compare application

performance with different JVMs,

collectors and heap sizes easily

❯	� Open source

❯	� Graphical output

❯	� Zero performance overhead

Try jHiccup
You can download jHiccup from the Azul Systems website at

www.azulsystems.com/downloads/jHiccup and access the

jHiccup forum here: www.jhiccup.com/forum.

Please send feedback on jHiccup to tools@azulsystems.com.

Contact Azul Systems:
1173 Borregas Avenue
Sunnyvale, CA
94089 USA

T + 1.650.230.6500
F + 1.650.230.6600
www.azulsystems.com

Copyright © 2013 Azul Systems, Inc. 1173 Borregas Avenue, Sunnyvale, CA 94089-1306 All rights reserved. “Azul Systems”, “Zing”, and the Azul logo
are trademarks of Azul Systems Inc. Java is a trademark of Oracle Corporation in the United States and other countries. Other marks are the property
of their respective owners and are used here only for identification purposes. Products and specifications discussed in this document may reflect
future versions and are subject to change without notice.

Hiccup Charts

Hiccup charts show you graphically how many times your

system paused and for how long. In the chart to the right, the

multi-hundred millisecond hiccups (black circle) on the left,

are indicative of periodic young generation garbage collec-

tion. The larger spike on the right (grey circle) is less frequent

but is multiple seconds in duration. This is old

generation garbage collection.

This second chart is the companion to the one on the

previous page and shows the percentile distribution of the

information in the top chart. For any percentile, you can

figure out what the worst case response time was. This view

is more useful for systems operating under SLAs. Here you

see how the application performs against its required service

level. This type of chart also makes it easier to plot your

requirements against the actual behavior of the system.

PRODUCT
DATA SHEET

Oracle HotSpot ParallelGC, 1GB in 8GB heap Oracle HotSpot G1, 1GB in 8GB heap

Example: Using jHiccup for Comparing Collectors

In this example, jHiccup is used to compare two garbage

collectors – HotSpot ParallelGC vs. G1. You can see that G1

has an interesting pattern of lots of smaller pauses, all in

the range of 100s of milliseconds in addition to the long

pauses both collectors share.

SLA

