

 1

High-Performance Microservices Using Java

Solutions Brief

Cloud Native Compiler

Frequently Asked Questions

(FAQ)

2 Cloud Native Compiler FAQ

Q: Who is Azul?

A. Azul, a US private company founded in 2002, is the

premier provider of JavaTM support. As the only

company 100% focused on Java and with the largest

Java team outside of Oracle, Azul has the skills and

expertise, and globally distributed Support

organization to ensure your Java success. Powering

some of the largest companies in the world, including:

• 27% of the Fortune 100

• 50% of Forbes Top 10 World’s Most Valuable

Brands

• 10 out of 10 of the world’s Top financial trading

companies

Azul has a Java runtime solution to fit your business

needs. From high-change velocity SaaS organizations

to mission-critical eCommerce applications, leading

brands such as Avaya, Bazaarvoice, BMW, Credit

Suisse, Deutsche Telekom, LG, Mastercard, Mizuho,

Priceline, Salesforce, Software AG, Workday and many

more bet their business on Azul every day.

Azul’s products and services are used by millions of

Java developers, hundreds of millions of devices, and

the world’s most highly regarded businesses trust Azul

to power their applications with exceptional

capabilities, performance, security, value, and success.

Azul solutions are available for developers, ISVs,

enterprises with on-premises and/or cloud

deployments, and hardware OEMs building

embedded and IoT devices.

Q: What is the Cloud Native Compiler?

A. Cloud Native Compiler is the first offering of the

Azul Intelligence Cloud family of products to be made

generally available (GA) to Azul customers. The Azul

Intelligence Cloud includes a series of cloud-centric

analytical and code optimization modules to manage,

analyze and scale your Java fleets of cloud instances,

servers, desktops and IoT devices.

The Cloud Native Compiler is a scalable Just-In-Time

(JIT) compilation server. It enables Java Virtual

Machines, Java runtimes allowing Java programs to

‘write once, run anywhere’, to provide a server-side

optimization solution that offloads JIT compilation to

separate and dedicated service resources, providing

more processing power to JIT compilation while

freeing your client JVMs from the burden of doing JIT

compilation locally.This allows you to improve Java

and JVM-based application performance while right-

sizing infrastructures to deliver cost savings, especially

when leveraging cloud connectivity at scale.

Q: What is a Just-in-Time (JIT) Compiler?

A. A Just-In-Time (JIT) compiler is a component of the

runtime environment that improves the performance of

Java applications by compiling bytecodes to optimized

native machine code at runtime. JIT optimization

provides a multitude of benefits, including the ability to

use speculative optimizations that lead faster eventual

code. However, traditional on-JVM JIT compilers must

share the JVM’s local CPU resources and compete with

the application logic in using that capacity. This

presents several challenges:

• The JIT compiler is limited in resources.

Resulting optimizations take time to arrive at,

and benefits are limited by the practical amount

of time that applications can wait for

optimization and warm-up to complete.

• The JIT compiler is limited in how aggressively it

can afford to optimize code. The resulting

optimizations are not as fast as they could be if

the optimizer had more resources available

The Cloud Native Compiler provides a server-side

solution to overcome these challenges when deployed

alongside connected Zulu Prime-based Java Virtual

Machines.

Q: When was the Cloud Native Compiler released?

A. Cloud Native Compiler became generally available

on October 15th as a customer-managed component in

conjunction with Azul Platform Prime.

3 Cloud Native Compiler FAQ

Q: What is Azul Platform Prime?

A. Azul Platform Prime turbocharges the performance

and scalability of your Java applications with a hyper-

optimized runtime that maximizes performance while

dramatically driving down infrastructure costs.

Based upon Zulu Prime builds of OpenJDK, Prime

extends the open-source Java standard, OpenJDK by

applying unique innovations to improve the runtime

characteristics of Java workloads. This leads to better

performance and throughput. Prime boosts the

number of transactions from the same hardware and

speeds up Java performance even as loads increase. It

is proven to reduce capital expenses for servers by as

much as 50% and drive continuous value.

Key Azul Platform Prime features include the C4

Garbage Collector, removing pauses including stop-

the-world pauses; the Falcon JIT Compiler, building

on LLVM technology for faster throughput; and

ReadyNow! for smoother warm-up. The Falcon JIT

compiler replaces OpenJDK’s C2 JIT Compiler to run

different levels of optimizations, and its upper tier of

optimizations produces optimized code that can run

significantly faster than code produced by the

OpenJDK C2 compiler.

Together, the capabilities combine to ensure your Java

applications start fast, run faster, and stay consistently

fast while ensuring infrastructure optimization and cost

savings of up to 50%.

The Cloud Native Compiler specifically leverages the

Falcon JIT Compiler feature, running it as a server-side

optimization solution and externally to the JVM.

Q: How does the Cloud Native Compiler benefit an

Azul Platform Prime workflow?

A. At a high level, Cloud Native Compiler when used

with Azul Platform Prime immediately allows users to

offload JIT compilation from the JVM to dedicated

servers. This frees JVM processes from expensive

compute and memory overheads at key times, like

warm-up. Cloud Native Compiler also improves

performance, ensures consistency of performance, and

reduces costs by right-sizing resources.

At a deeper level, using more aggressive optimization

levels requires more resources, and when using JVM-

local JIT compilers for optimization, resource tradeoffs

can often lead to a choice of lowering optimization

levels in favor of improved warmup times. Cloud

Native Compiler eliminates trade-offs by removing JIT

compilation work from individual JVMs and shifting the

work of the Falcon JIT compiler to a separate shared

service. This shift of work and associated resources

allows the Cloud Native Compiler to apply even the

most aggressive Falcon JIT optimization levels without

disrupting individual JVM behavior.

Q: What do I need to run the Cloud-Native

Compiler?

A. You must have access to Zulu Prime builds of

OpenJDK (part of the Azul Platform Prime product) and

access to a Kubernetes cluster. If you do not have a

Kubernetes cluster, the Installing Cloud Native

Compiler Documentation will help you set it up. Azul

Engineers are available for further guidance.

Cloud Native Compiler is best deployed on elastic

(cloud) infrastructures, easy to spin up and easy to take

down. It benefits larger Zulu Prime configurations.

Anything above 50 server instances could show Cloud

Native Compiler benefits for key JIT compilation

processes, e.g., warm-up. However, the larger the

configurations of JVMs, the greater the likely impact.

Q: How does the Cloud Native Compiler right-size

resource? Can it also reduce the footprint of the

Zulu Prime JVM?

A. Memory and compute, required by the JIT Compiler

in bottleneck scenarios, e.g., warm-up, may no longer

be required by the instance running the JVM.

Customers often must reserve 2x or more CPU capacity

for JVMs than they need just for running their

applications to enable JIT compilation during warm-up

and de-optimizations. Using Cloud Native Compiler

moves this cost to the service, allowing you to serve the

same load on a smaller image. This way, you can

optimize and right-size your infrastructure for compute

and memory requirements while optimizing

performance.

https://docs.azul.com/cloud_native_compiler/Install-Cloud-Native-Compiler
https://docs.azul.com/cloud_native_compiler/Install-Cloud-Native-Compiler

4 Cloud Native Compiler FAQ

In the initial release of Cloud Native Compiler, the JVM

switches to running code in interpreted mode when

the Cloud Native Compiler service cannot be reached.

In upcoming releases, we will have a full fallback to

local Falcon JIT Compiler when the service is

unresponsive.

Q: Which builds of Zulu Prime Builds of Open JDK

are supported by Cloud Native Compiler?

A. 21.09 and above.

Q: What resources are required to run Cloud Native

Compiler?

A. The Cloud Native Compiler resources can be dialled

up and down as needed. Since the Cloud Native

Compiler (CNC) service uses a large amount of

resources (recommended 4 CNC vCores for every JVM

vCore), it is imperative to correctly configure

autoscaling. When no JVMs are being started or

restarted, the cloud native compiler can be dialled

down to a minimal footprint.

Azul recommends 1 cache for every 15 compile

brokers. This will change in future with Cloud Native

Compiler updates, in addition to improved autoscaling

capabilities. Currently scaling is primarily manual, with

some experimental autoscaling options, such as HPA

config in the YAMLs.

Remember that the Cloud Native Compiler needs and

uses large amounts of capacity for short bursts of time,

so consider within an infrastructure of overall

optimizing application efficiency, right-sizing resources

where and when they are needed.

Q: What logging and monitoring options are

available to me?

A. With the first release, you can integrate Cloud

Native Compiler into existing Prometheus/Grafana

applications. All pods export metrics for Prometheus

scraping and include dashboard JSON to add to

Grafana instances. <cnc-install-

dir/grafana/cnc_dashabord.json is a Grafana

configuration file for a dashboard of key Cloud Native

Compiler metrics. You can import the dashboard into

your existing Grafana installation.

Q: What are the time horizons of new

developments?

A. Expect to see significant improvements as outlined

above in a few months.

Q: What is the cost of Cloud Native Compiler

Support?

A. Support for the Cloud Native Compiler, as of

October 15th, is included in the annual cost of Azul

Platform Prime. Please see the Azul Platform Prime

pricing for more information and support tier options.

Q: What are my alternatives to the Azul Cloud

Native Compiler?

A. The most likely alternative is to run JIT compilation,

as you are likely already running it, within the JVM.

Ahead of Time [AOT] compilers provide non-JIT

compilation alternatives. Cloud Native Compilation is a

fundamentally different approach to AOT compilation,

and results in dramatic infrastructure savings and

footprint reduction. Where pure-AOT solutions focus

on statically compiling applications into a small and

https://grafana.com/docs/grafana/latest/dashboards/export-import/
https://www.azul.com/products/pricing/
https://www.azul.com/products/pricing/

5 Cloud Native Compiler FAQ

quick-to-start executable, the resulting code is less

optimized, runs slower, and requires more resources

(and cost) to carry the same load. order to avoid the

burden and local costs of JIT optimization. Such pure-

AOT static compilers sacrifice key optimizations

capabilities (e.g., speculative optimizations which are

key to speed gains in Java). In contrast, Cloud Native

Compilation retains the full power of JIT compilation,

and “turns it on to the max” by shifting the heavy lifting

optimization work away from the running application

instances, and onto a shared, elastic, and efficient

cloud resource. This allows JVMs to benefit from

powerful optimizations and results in faster and more

efficient code, which in turn translates to lowered cloud

spend as a smaller infrastructure footprint is required

to run the same workload. In contrast with AOT static

compilers, Cloud Native Compilation lets applications

start and get to speed quickly, but without sacrificing

their eventual speed and efficiency.

Q: Can I evaluate Cloud Native Compiler?

A. Cloud Native Compiler is free to use with any

properly licensed Zulu Prime builds of OpenJDK. If you

need Zulu Prime bits, please visit the download page

at https://www.azul.com/products/prime/stream-

download/. Cloud Native Compiler install components

are available on the Azul cdn and on Dockerhub.

Stream Zulu Prime builds are available for

development, testing and evaluation. Stable Zulu

Prime builds are for production use, super-stable

builds that incorporate only CPUs, PSUs, and Azul

Platform Prime critical fixes, and do not uptake new

features and non-critical enhancements from Stream

Builds.

Q: Where can I learn more Cloud Native Compiler?

A. The best place to start is the Documentation, at

https://docs.azul.com/cloud_native_compiler/.

Azul can provide product introductions from

knowledgeable engineers if appropriate.

Q: Can I report a bug or request an enhancement as

part of my Azul support services?

A. Azul offers Platform Prime customers 24x7x365

phone and email support services with the Platinum

Support tier, which includes opening bugs or filing

enhancement requests with Azul. Depending on the

severity of the bug, Azul’s world-class Support

organization will work to provide application triage,

root cause analysis, temporary workarounds, or out-of-

cycle patches to address customer’s needs.

Q: Are Azul Zulu Prime binaries, (in Azul Platform

Prime), “Certified” Java SE compatible & compliant?

A. Yes. Azul is one of three vendors that have licensed

from Oracle the OpenJDK Community Technology

Compatibility Kit (TCK) for all versions of OpenJDK

(e.g., Java 7, 8, 9+). Every binary Azul build for our

customers is verified “compatible and compliant” with

the Java SE (Standard Edition) specifications using

these TCKs. These TCK compliant binaries also carry

Intellectual Property (IP) indemnification, which are

only granted to binaries that have passed the TCKs.

This ensures that migrating from Oracle Java to Azul

Platform Prime and other supported Azul OpenJDK

binaries is straightforward. Azul Zulu Prime builds are a

drop-in JDK and JVM replacement for the Oracle JDK

and HotSpot JVM.

For more information on Cloud Native Compiler, email info@azul.com

Contact Azul

385 Moffett Park Drive, Suite 115

Sunnyvale, CA 94089 USA

 +1.650.230.6500

www.azul.com

© 2021 Azul Systems, Inc 11-21v1

https://www.azul.com/products/prime/stream-download/
https://www.azul.com/products/prime/stream-download/
https://docs.azul.com/cloud_native_compiler/
http://openjdk.java.net/groups/conformance/JckAccess/jck-access.html
http://openjdk.java.net/groups/conformance/JckAccess/jck-access.html
https://www.azul.com/products/core/java-standards/
mailto:info@azul.com
http://www.azul.com/

	Solutions Brief

