

 1

High-Performance Microservices Using Java

White Paper

C4:

The Continuously Concurrent

Compacting Collector

C4: The Continuously Concurrent Compacting Collector

Gil Tene
Azul Systems Inc.

gil@azulsystems.com

Balaji Iyengar
Azul Systems Inc.

balaji@azulsystems.com

Michael Wolf
Azul Systems Inc.

wolf@azulsystems.com

Abstract
C4, the Continuously Concurrent Compacting Collector, an up-
dated generational form of the Pauseless GC Algorithm [7], is in-
troduced and described, along with details of its implementation
on modern X86 hardware. It uses a read barrier to support concur-
rent compaction, concurrent remapping, and concurrent incremen-
tal update tracing. C4 differentiates itself from other generational
garbage collectors by supporting simultaneous-generational con-
currency: the different generations are collected using concurrent
(non stop-the-world) mechanisms that can be simultaneously and
independently active. C4 is able to continuously perform concur-
rent young generation collections, even during long periods of con-
current full heap collection, allowing C4 to sustain high allocation
rates and maintain the efficiency typical to generational collectors,
without sacrificing response times or reverting to stop-the-world
operation. Azul systems has been shipping a commercial imple-
mentation of the Pauseless GC mechanism, since 2005. Three suc-
cessive generations of Azul’s Vega series systems relied on custom
multi-core processors and a custom OS kernel to deliver both the
scale and features needed to support Pauseless GC. In 2010, Azul
released its first software-only commercial implementation of C4
for modern commodity X86 hardware, using Linux kernel enhance-
ments to support the required feature set. We discuss implementa-
tion details of C4 on X86, including the Linux virtual and physi-
cal memory management enhancements that were used to support
the high rate of virtual memory operations required for sustained
pauseless operation. We discuss updates to the collector’s manage-
ment of the heap for efficient generational collection and provide
throughput and pause time data while running sustained workloads.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Dynamic storage management; Concurrent pro-
gramming structures; D.3.4 [Processors]: Memory management
(garbage collection); D.4.2 [Storage Management]: Garbage col-
lection; Virtual memory

General Terms Algorithms, Design, Languages, Performance.

Keywords concurrent, garbage collection, pauseless, genera-
tional, read barrier, virtual memory, Linux.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ISMM’11, June 4–5, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0263-0/11/06. . . $10.00.

1. Introduction
Generational collectors are based on the Weak generational hypoth-
esis [18] i.e. most objects die young. Therefore by focusing the GC
efforts on these objects you would get the proverbial most bang
for the buck. Generational focus helps GC algorithms keep up with
higher allocation rates, which translates to higher throughput. Most
generational collectors divide the heap into two generations, with
the younger generation having a smaller, more frequently collected
live set. This results in the mutators being exposed to shorter appli-
cation disruptions associated with young generation collection in
the common case, while allowing GC to keep up with high allo-
cation rates. It also serves to delay old generation processing and
make it more rare, reducing the frequency of the larger GC work-
loads and response time artifacts generally incurred in full heap
collections.

Most generational collector implementations use stop-the-
world, copying, parallel, young generation collectors, relying on
the generally short GC pauses of parallel young generation col-
lection to be acceptable for sustained server operations. However,
while young generation stop the world pauses are generally quite
short, common patterns in enterprise programs executing at cur-
rent server scales can cause occasional (and sometimes frequent)
large young generation GC pauses as large live sets with medium
life spans appear in the young generation and are copied within it
before being promoted, or as shifts in program execution phases
create large amounts of new long-lived objects in rapid succession.
The former case is common with in memory object caches, with
fat-state session based enterprise applications (such as portals), and
with replicated in-memory data and messaging systems. The latter
case occurs at application phase shift times, such as during ap-
plication startup, application failover, cache hydration times, and
catalog or contents update or reload operations driven by higher
level business processes.

The problems caused by impacts on response time, due to grow-
ing heap sizes coupled with stop-the-world-compaction old gener-
ation collectors, are well known [3, 9]. However, as Managed Run-
times continue to grow and attempt to use 10s (or even 100s) of
Gigabytes of memory the lengths of occasionally long young gen-
eration stop-the-world events also grow to become unacceptable for
most enterprise applications. When viewed from the perspective of
current commodity server environments containing 100s of Giga-
bytes of cheap RAM, even “modest sized” applications would be
expected to sustain live sets in the 10s of Gigabytes, with young
generation live sets easily ranging into the Gigabytes and occasion-
ally spiking into the 10s of gigabytes. Concurrent young generation
collection in such environments is just as important as concurrent
old generation collection was a decade ago, if not more so.

At the core of the problem lie compaction and object relocation:
Object relocation is inherent to all effective generational collec-
tors. It would be “extremely hard” to implement a generational col-
lection scheme without supporting promotion. In order for young

79

generation collection to be concurrent, it must support concurrent
object relocation. Concurrent relocating collectors have been pro-
posed in various works [13]. However, with the exception of Azul’s
JVMs, no commercially shipping concurrent compacting or con-
current relocating collectors are available as of this writing, for ei-
ther Java or .NET server environments.

C4 is a Generational, Continuously Concurrent Compacting
Collector algorithm. It is a throughput-friendly, multi-generational
improvement to the full heap, single generation read barrier based
Pauseless GC algorithm [7]. All generations in C4 use concurrent
compacting collectors and avoid the use of global stop-the-world
operations, maintaining concurrent mutator operation throughout
all phases of each generation. The cycles and phases of the differ-
ent generations can be simultaneously and concurrently executed.
While current C4 implementations use two generations (young and
old), the algorithm can be straightforwardly extended to an N gen-
eration system.

C4 is currently shipping as part of commercially available
JVM’s. These JVMs are available on Azul’s custom Vega hard-
ware platform as well as through its recently released X86 based
Zing software platform. C4 has also been demonstrated within an
OpenJDK based implementation as part of the Managed Runtime
Initiative [2]. The C4 collector allows JVMs to smoothly scale up
to 10’s and 100’s of Gigabytes in heap sizes and live object sets,
sustain multi-Gigabyte-per-sec allocation rates, and at the same
time contain the JVM’s measurable jitter1and response time arti-
facts to the low 10’s of msec. At the point of this writing, measured
JVM jitter is no longer strongly affected by garbage collection,
with scheduling and thread contention artifacts dominating.

The X86 based implementation of C4 runs on top of a modified
Linux kernel that delivers a new virtual memory subsystem used
to support the features and throughput needed by C4’s concurrent
operation and page lifecycle. The goals of this paper are to describe:

1. The basic C4 algorithm, including inter-generational concur-
rency and page lifecycle aspects

2. The features added to the Linux virtual memory subsystem to
support C4 functionality

3. C4’s updated heap management logic

2. The C4 Algorithm
C4 is generational, concurrent, and always-compacting. It uses two
independently running instances of a modified Pauseless GC al-
gorithm [7] to simultaneously collect both the young generation
and old generation. Each generation’s GC cycle goes through logi-
cally sequential object Mark, object Relocate and reference Remap
phases. The cornerstones of C4’s concurrent compacting algorithm
include:

2.1 The Loaded Value Barrier (LVB)

The Loaded Value Barrier is an incarnation of Pauseless GC’s
read barrier. The LVB imposes a set of invariants on every object
reference value as it is loaded from memory and made visible to
the mutator, regardless of use. The two invariants imposed on all
loaded reference values are:
• All visible loaded reference values will be safely “marked

through” by the collector, if they haven’t been already.

1 JVM jitter, in this context, refers to application observable time delays
in executions, that would have been instantaneous had it not been for the
behavior of the JVM and the underlying system stack. For example, a
1 msec, Thread.sleep() would be expected to wake up within 1 msec, and
any observable delay beyond 1 msec can be attributed to JVM jitter

• All visible loaded reference values point to the current location
of the safely accessible contents of the target objects they refer
to.
An LVB can obviously encounter loaded reference value that

do not meet one of these invariants, or both. In all such cases,
the LVB will “trigger” and execute collector code to immediately
remedy the situation and correct the reference such that it meets the
required invariants, before making it visible to subsequent program
operations.

LVB differs from a Brooks-style [6] indirection barrier in that,
like a Baker-style [4] read barrier, it imposes invariants on refer-
ences as they are loaded, rather than applying them as they are
used. By applying to all loaded references, LVB guarantees no un-
corrected references can be propagated by the mutator, facilitating
certain single-pass guarantees.

LVB further differs from both Baker-style and Brooks-style
collectors in two key ways:

1. LVB simultaneously imposes invariants both on the reference’s
target address and on the reference’s marking state, facilitating
both concurrent relocation and precise wavefront tracing in
C4 [19] using a single fused barrier.

2. LVB ensures (and requires) that any trigger of either (or both) of
its two invariant tests can be immediately and independently re-
paired by the mutator using Self Healing behavior (see below),
leading to efficient and predictable fast path test execution and
facilitating C4’s concurrent marking, concurrent relocation, and
concurrent remapping characteristics.

2.2 Self Healing

LVB is a self-healing barrier. Since the LVB is always executed at
reference load time, it has access not only to the reference value
being verified, but to the memory address the value was loaded
from as well. When an LVB triggers and takes corrective action,
modifying a reference to meet the LVB invariants, it will also
“heal” the source memory location that the reference was loaded
from by (atomically) storing a copy of the reference back to the
source location. This allows mutators to immediately self heal the
root cause of each LVB trigger as it occurs, avoiding repeated
triggers on the same loaded reference, and dramatically reducing
the dynamic occurrence of read barrier triggers. Each reference
memory storage location will trigger “at most once” (discounting
minute levels of atomicity races in the healing process). Since the
number of references in the heap is finite, single pass marking and
single pass reference remapping are both guaranteed in a straight
forward manner.

Self healing is uniquely enabled by the LVB’s semantic posi-
tion in the code stream, immediately following the reference load
operation, and preceding all uses or propagation of the loaded ref-
erence value. This semantic proximity to the reference load opera-
tion grants the LVB access to the loaded reference’s source address,
which is required in order to perform the healing actions. Through
Self Healing, LVB dramatically reduces the dynamic occurrence
of read barrier triggering, making LVB significantly more efficient
and predictable than both Brooks style and Baker style barriers, as
well as other read barriers that will continue to trigger in the hot
code path during certain GC phases.

2.3 Reference metadata and the NMT state

Similarly to the single generation Pauseless GC algorithm [7], C4
tracks metadata “Not Marked Through” (NMT) state associated
with all object references in the heap2. On modern 64 bit hardware,
this metadata is tracked in bits of the object reference that are not
interpreted as address bits, but are considered by the LVB. Object

80

references with an NMT state that does not match the currently
expected NMT value will trigger the LVB.

C4’s use of NMT state differs from Pauseless [7]. Where Pause-
less maintained a single, global, currently expected value of the
NMT state, C4 maintains a different expected value for the NMT
field for each generation. In addition, C4 uses reference metadata
bits to track the reference’s generation (the generation in which the
object to which the reference is pointing, resides). This allows the
LVB to efficiently verify the NMT value for the proper generation.
Since young generation and old generation collections can proceed
independent of each other, their expected NMT states will often
be different. A reference’s generation, however, will never change
under C4 without the object it is pointing to being relocated.

If, during an active mark phase, the LVB encounters a loaded
object reference value with an NMT state that does not match the
current expected state for that reference’s target generation, the
LVB will correct the situation by changing the NMT state to the
expected value, and logging the reference on the collector’s work
list to make sure that it is safely traversed by the collector. Through
self healing, the contents of the memory location that the reference
value was loaded from will be corrected as well.

2.4 Page protection and concurrent relocation

C4 uses the same underlying page protection scheme introduced
in Pauseless [7]. Pages that are currently being compacted are pro-
tected, and the LVB triggers when it encounters a loaded reference
value that points to a protected page. In order to correct the trig-
gering situation, the LVB will obtain the new location of the refer-
ence’s target object, correct the reference value, and heal the con-
tents of the memory location that the reference value was loaded
from. In cases where the triggering reference value points to an ob-
ject that has not yet been relocated, the LVB will first cooperatively
relocate the object, and then correct the reference to point to its new
location.

2.5 Quick Release

C4 uses the Quick Release method, first introduced in Pauseless [7]
and with later variants used in Compressor [13], to efficiently recy-
cle physical memory resources without needing to wait for a GC cy-
cle to complete. When relocating objects for compaction, C4 stores
object forwarding information outside of the page that objects are
being compacted away from (“from” pages). This forwarding in-
formation is later used by the LVB and by the collector’s remap
phase to correct references to relocated objects such that they point
to the object’s current address. Once all the objects in a “from” page
have been relocated elsewhere, the contents of the “from” page are
no longer needed. Quick Release leverages the fact that while the
“from” page’s virtual address cannot be safely recycled until all live
references to objects that were relocated from it are corrected, its
physical backing store can be immediately freed and recycled.

C4 uses Quick Release to support hand-over-hand compaction,
using the physical memory released by each compacted page as the
target resource for compacting the next page. An entire generation
can be compacted in a single cycle using a single free seed page,
and without requiring additional free memory. As a result, C4 does
not need survivor spaces, pre-allocated “to” spaces, or an amount
of free memory equal to the size of the live set in order to support
single pass compaction.

Quick Release also allows memory to be recycled for mutator
allocation needs without waiting for a complete heap remap to

2 We do not use the tricolor abstraction to represent reference traversal
states. Traditional tricolor abstraction [20] applies to object traversal states
and not to reference traversal states. “Not Marked Through” references that
would trigger an LVB could exist in traditionally white or grey objects and
could be referencing objects that are traditionally white, grey or black.

complete. This significantly reduces the time between deciding to
start a GC cycle and the availability of free memory to satisfy
mutator allocation, resulting in GC heuristics that are more simple
and robust.

2.6 Collector Phases

Supported by the strong invariants of the LVB, the C4 mechanism is
quite straightforward, with each generation’s collector proceeding
through three phases:
• The Mark Phase: This phase is responsible for tracing the gen-

eration’s live set by starting from the roots, marking all encoun-
tered objects as live, and all encountered object references as
marked through. At the beginning of a Mark phase, all live
references are known to have an NMT value that matches the
previous cycle’s expected NMT value. As the Mark phase com-
mences, the collector flips the expected NMT value, instantly
making all live references “not marked through”, arming the
LVB to support single pass marking. The collector proceeds
to prime its worklists with roots, and continues to mark until
the work lists are exhausted, at which point all reachable ob-
jects in the generation are known to have been marked live and
all reachable reference NMT states are known to be marked
through.

• The Relocate Phase: This phase compacts memory by relo-
cating live objects into contiguously populated target pages,
and freeing the resources occupied by potentially sparse source
pages. Per-page liveness totals, collected during the previous
mark phase, are consulted in order to focus relocation on com-
pacting the sparsest pages first. The core relocation algorithm
in C4 is similar to Pauseless. Each “from” page is protected,
its objects are relocated to new “to” pages, forwarding informa-
tion is stored outside the “from” page, and the “from” page’s
physical memory is immediately recycled.

• The Remap Phase: Lazy remapping occurs as mutator threads
encounter stale references to relocated objects during and after
the relocate phase. However, in order to complete a GC cycle
a remap pass is needed. During the remap phase, all live ref-
erences in the generation will be traversed, and any stale ref-
erences to objects that have been relocated will be corrected to
point to the current object addresses. At the end of the remap
phase, no stale references will exist, and the virtual addresses
associated with “from” pages relocated in the relocate phase
can be safely recycled. While the remap phase is the third and
final logical step of a GC cycle, C4 is not in “a hurry” to finish
it. There are not physical resources being held, and lazy remap-
ping can continue to occur without disrupting mutator opera-
tions. As a result, C4 fuses each remap phase with the next GC
cycle’s mark phase for efficiency. Since both phases need to
traverse the same object and reference graphs, it joins them into
a combined Mark-Remap phase that performs both operations
in a single combined pass. Figure 1 depicts, the interleaving of
combined Mark-Remap phases across overlapping GC cycles.

3. Multi-Generational Concurrency
By leveraging the generational hypothesis [18], generational col-
lectors tend to derive significant efficiency, and are able to support
significantly higher allocation throughput than their single genera-
tion counterparts. However, since concurrent relocation of objects
seems to be “hard” to do in most currently shipping collectors, their
young generation collectors are inherently stop-the-world, and are
exposed to significant pause time effects that arise from large tran-
sient behaviors or a significant allocation rate of mid and long lived
objects.

On the other hand, concurrent single generational collectors,
even when they are able to avoid or delay the use of stop-the-world

81

Figure 1. C4 GC cycle

object relocation, are exposed to the inefficiency issues and limited
sustainable allocation rates that arise from the lack of a generational
filter.

C4 eliminates this classic throughput vs. latency trade-off by
supporting concurrent relocation. C4 is simultaneously concurrent
in both the young and old generations, and thereby does not suf-
fer from either of the above pathologies. C4 maintains the high
throughput, efficiency and sustained allocation rates typical to gen-
erational collection while at the same time maintaining the consis-
tent response times and robustness of concurrent compacting col-
lectors.

Both young and old generations use the same concurrent mark-
ing, compacting, and remapping algorithm described above. C4
uses a classic card marking mechanism [12] for tracking the re-
membered set of references from the old generation to the young
generation. C4’s card marks are precise, supporting a reliably
unique card mark per word in memory. C4 uses a filtering Stored
Value Barrier (SVB), a write barrier that only marks cards associ-
ated with the storing of young generation references into the old
generation. The SVB leverages the same generational reference
metadata state used by the LVB in order to efficiently filter out
unnecessary card marking operations without resorting to address
range comparisons and fixed generation address ranges.

3.1 Simultaneous Young and Old generation operation

Most current generational collectors that include some level of con-
current old generation processing interleave stop-the-world young
generation collector execution with longer running old generation
collection. This interleaving is necessary, as without it the sus-
tainable allocation rate during old generation collection would be
equivalent to that of a non-generational collector, negating the value
of having a young generation collector to begin with. Simultaneous
collection of both generations is not commonly supported. Such
simultaneous operation would not add value to already stop-the-
world young generation collectors. When both the old and young
generations use concurrent collectors, allowing concurrent young
generation collection to execute during a concurrent old generation
collection is similarly necessary. Straight forward interleaving may
suffice for maintaining throughput. For example, the old generation
collector can be “paused” while the young generation collector ex-
ecutes a complete cycle. However, such interleaving would limit
flexibility and increase code complexity by forcing the inclusion
of relatively fine grain synchronization and “safe pausing” points

in the old generation collector’s mechanism, and potentially in the
young generation collector’s as well.

C4 supports simultaneous concurrent execution of both the old
and young generation collectors, limiting cross-generational syn-
chronization to interlocks that are used to synchronize some phase
shift edges as well as access to critical data structures. Figure 2
illustrates this.

Figure 2. Simultaneous generational collection in C4

In order to facilitate continued execution of multiple young gen-
eration cycles during an old generation mark phase we avoid per-
forming a full heap collection that would prohibit changes to the
young generation’s expected NMT state. Instead, we perform old
generation-only marking using a set of young-to-old roots gener-
ated by a special young generation cycle that is triggered along
with every old generation mark cycle. This young generation cycle
hands off the young-to-old pointers it locates to the old collector for
use as part of its root-set. The hand-off is done during the marking
phase of the young generation cycle with the old generation collec-
tor concurrently consuming the root set produced by the young gen-
eration marker. Further young generation cycles continue to happen
concurrently, and will ignore the new-to-old pointers they find dur-
ing marking. While the young generation collector is mostly de-
coupled from the old generation collector, synchronization points
around critical phase shifts are necessary. For example, the young
collector does need to access objects in the old generation. If a card
mark is set for a pointer in an object in the old generation, the young
generation collector must read that pointer to discover which ob-
ject it refers to. Similarly, Klass objects in the old generation may
describe the structure of the objects in young generation memory.
For the young generation collector to find the pointers in an object
it needs to mark through, it must read that object’s corresponding
klass object to determine the layout of the object at hand. In ei-
ther case, since the old collector might be in the midst of relocating
the object that is of interest to the young generation, some level of
synchronization around cross-generational access is necessary.

We resolve these and other issues by introducing a synchroniza-
tion mechanism between the two collectors referred to as ‘inter-
locks’. An interlock between the old and new collector, briefly halts
one of the collectors, to provide safe access to the object at hand.
The number of Klass objects is typically a tiny fraction of the ob-
jects in memory, and this results in a very short serialization be-
tween the young and the old generation cycles, while the mutator
maintains concurrency. We similarly use the interlock mechanism
to allow the young generation collector to safely scan card marks.
The young generation collector waits until all old generation relo-
cation is halted, and then performs the card mark scan. Once done,
it signals the old collector that relocation may resume. The syn-
chronization is done at page granularity, so the affected collector is
delayed only for short periods of time, or the order of what it takes
for the old collector to relocate the live objects in a single page.

The two collectors need to synchronize at other points as well.
E.g. each collector needs exclusive access to VM internal data
structures such as the system dictionary, the symbol table and
the string tables. The batched memory operations described in
section 5 also require the collectors to coordinate batch boundaries
between them.

82

4. Implementation notes
The C4 algorithm is entirely concurrent, i.e. no global safepoints
are required. We also differentiate between the notion of a global
safepoint, where are all the mutator threads are stopped, and a
checkpoint, where individual threads pass through a barrier func-
tion. Checkpoints have a much lower impact on application respon-
siveness for obvious reasons. Pizlo et al [16] also uses a similar
mechanism that they refer to as ragged safepoints.

The current C4 implementation, however, does include some
global safepoints at phase change locations. The amount of work
done in these safepoints is generally independent of the size of
the heap, the rate of allocation, and various other key metrics,
and on modern hardware these GC phase change safepoints have
already been engineered down to sub-millisecond levels. At this
point, application observable jitter and responsiveness artifacts are
dominated by much larger contributors, such as CPU scheduling
and thread contention. The engineering efforts involved in further
reducing or eliminating GC safepoint impacts will likely produce
little or no observable result.

Azul has created commercial implementations of the C4 algo-
rithm on three successive generations of its custom Vega hardware
(custom processor instruction set, chip, system, and OS), as well
on modern X86 hardware. While the algorithmic details are vir-
tually identical between the platforms, the implementation of the
LVB semantics varies significantly due to differences in available
instruction sets, CPU features, and OS support capabilities.

Vega systems include an LVB instruction that efficiently imple-
ments the entire set of LVB invariant checks in a single cycle, and is
assisted by a custom TLB mode that supports GC protected pages
and fast user mode traps. The custom OS kernel in Vega systems
includes support for extremely efficient virtual and physical mem-
ory management and manipulation, facilitating efficient page pro-
tection and direct support for quick release and C4’s overall page
lifecycle needs.

Azul’s LVB implementation on modern X86 hardware main-
tains the same semantic set of operations and invariant checks
using a set of X86 instructions, effectively “micro-coding” the
LVB effect and interleaving it with other instructions in the X86
pipeline. The actual implementation of an LVB sequence varies
significantly even between different parts of a single runtime. For
example, LVBs appear in interpreter code, in JIT-compiled code
(coming from two different levels of tiered, optimizing JIT com-
pilers), and in a multitude of places in the C++ implementation of
runtime code. While each has different implementations of slow
paths, fast paths, instruction scheduling and interleaving opportu-
nities, the same LVB semantics and invariants are maintained in
all cases. For the purposes of this paper, the abstraction presented
earlier and proves to be sufficient, as a full description of the var-
ious LVB implementation options and details warrants a separate
research paper. However, see Appendix A for a sample implemen-
tation.

4.1 Page life cycle

Unlike most existing collectors which tend to use relatively static
memory mappings, the C4 algorithm uses a dynamic page life cy-
cle that includes continuous mapping, remapping, protection, and
unmapping of memory pages as GC cycles proceed. Figure 3 de-
picts the various states in the life cycle of a young generation heap
page (old generation heap pages go through a similar life cycle).
The solid rectangles represent virtual pages with backing physi-
cal storage. The dashed rectangles represent virtual pages with no
backing physical storage. The solid oval represents a physical page
that hasn’t been mapped to a virtual page yet. The page state is
represented as a tuple: <State><Gen><Prot>.

These states map to C4’s phases. Active pages start their life-
cycle in the Allocating state, representing a virtual memory page
mapped to a physical backing store, into which allocated objects
are placed. Allocating pages transition to the Allocated state once
their memory space is filled up with allocated objects. Pages re-
main in the Allocated state until the next relocation phase, when
C4 chooses to compact pages below a certain liveness threshold.
A page selected for compaction transitions to the Relocating state
and is protected from mutator access. Each live object in a Relo-
cating page is moved to a new, compacted page either by the first
mutator thread to access it, or by the collector. As described in sec-
tion 2.5, forwarding information that tracks new object locations is
kept outside of the Relocating page. Once the page contents had
been copied out, and the page transitions to the Relocated state, its
physical memory can be freed. At this point, the virtual page re-
mains in the Relocated state, but the physical page it was mapped
to is freed and transitions to the Free state. We refer to this transi-
tion as Quick-Release, where physical resources are recycled well
before address space can be reused. The virtual page remains in the
Relocated state until the end of the next remap phase, at which point
all the references pointing to that page would have been remapped
to its new location. At that point the virtual page transitions to the
Free state, from which it can be recycled into the Allocating state
by mapping it to an available physical memory page.

Figure 3. Life cycle of heap page

5. Operating System Support
During normal sustained operation, the C4 algorithm makes mas-
sive and rapid changes to virtual memory mappings. In a sequence
that was first described in Pauseless [7], page mappings are manip-
ulated at a rate that is directly proportional to the object allocation
rate in the application. Allocation results in mapping in a new page,
the page is then remapped, protected and unmapped during the
course of a GC cycle, resulting in 3 or 4 different mapping changes
per page-sized unit of allocation. Later works, such as Compres-
sor [13], share this relationship between sustained allocation rates
and virtual memory mapping manipulation rate. The operating sys-
tem’s ability to sustain virtual mapping manipulation rates directly
affects the sustainable application throughput that such collectors
can maintain without imposing observable application pauses.

In this section, we focus on two key metrics that are critical
to sustaining continuous concurrent compaction in C4. We explain
the limitations of current Linux virtual memory semantics and their
performance implications, and demonstrate how virtual memory
subsystem improvements achieved through new APIs and looser
semantic requirements deliver several orders of magnitude in im-
provement for these key metrics.

83

Active
Threads

Linux Modified Linux Speedup

1 3.04 GB/sec 6.50 TB/sec >2,000x
2 1.82 GB/sec 6.09 TB/sec >3,000x
4 1.19 GB/sec 6.08 TB/sec >5,000x
8 897.65 MB/sec 6.29 TB/sec >7,000x
12 736.65 MB/sec 6.39 TB/sec >8,000x

Table 1. Comparison of sustainable mremap rates

It is typically desirable (for both stability and headroom rea-
sons) for the GC cycles to run at a 1:5 or lower duty cycle. Further-
more, within each GC cycle, page remapping typically constitutes
less than 5% of the total elapsed cycle time, with most of the cy-
cle time consumed by marking/remapping and relocation. Together,
these ratios qualities mean that the garbage collector needs to sus-
tain a page remapping at a rate that is 100x as high as the sus-
tained object allocation rate for comfortable operation. This places
a significant stress on the virtual memory subsystem in stock Linux
implementations, and would significantly limit the sustainable al-
location rate on C4 unless the OS were able to support the required
performance.

5.1 Supporting a high sustainable remap rate

On stock Linux, the only supported memory remapping mechanism
has three key technical limitations:

• Each page remap includes an implicit TLB invalidate operation.
Since TLB invalidates require multiple cross-CPU interrupts,
the cost of remapping grows with the number of active CPU
cores in the executing program. This reduction in remap per-
formance with increased thread counts happens even when the
active threads do not participate in the remapping, or have any
interaction with the remapped memory.

• Only small (4KB on X86-64) page mappings can be remapped.

• Remap operations are single threaded within a process (grab-
bing a common write lock in the kernel).

To address the main remapping limitations in stock Linux and
to support C4’s need for sustained remapping rates, we created a
new virtual memory subsystem that exposes new APIs and added
features that safely support memory remaps, unmaps, and protec-
tion changes without requiring TLB invalidation (TLB invalidation
can be applied at the end of a large set of remaps if needed). C4
uses these new APIs to manage page life cycles. Our new virtual
memory subsystem also supports explicit and mixed mapping and
remapping of large (2MB on X86-64) pages, and safely allows con-
current memory manipulation within the same process.

Table 1 has a sample comparison of sustainable remap rates
between a stock, un-enhanced Linux and a Linux kernel containing
our changes.

• The tests were done on a 16 core system, 4 Socket AMD
Barcelona based system with 128GB of memory. The Linux
kernel revision is 2.6.32.

• The tests allocate 2MB of memory, and then repeatedly remap
it around a large address space for a given duration of time.

• The Active threads represent the number of additional active
threads (not the remapping thread) in the test application. The
active threads perform a pure integer loop workload - their sole
purpose is to “exist” and allow measurement of the effect of
running application threads on remap throughput (as a result of
needing to send TLB invalidates to additional active CPUs).

• Stock Linux test maps the memory using mmap(), and remaps
the memory using a 2MB mremap() call.

• The new virtual memory subsystem maps the memory using
az mmap() [with a flag indicating large pages are to be used],
and remaps the memory using a single thread performing 2MB
az mremap() calls [with a NO TLB INVALIDATE flag].

• These results do not take into account the additional speedup
that can be gained by using multiple remapping threads in our
new virtual memory subsystem.

5.2 Supporting a high remap commit rate

For efficient implementation of large amounts of relocation, the
current C4 implementation places an atomicity requirement on the
memory remapping changes in a given relocation phase. Page pro-
tection and remapping changes need to become visible to all run-
ning application threads at the same time, and at a safe point in
their execution. In order to perform a relocation of a bulk set of
pages, the C4 Collector will typically bring all application threads
to a common safe point, apply a massive remapping of a significant
portion of the garbage collected heap, and then allow the threads to
continue their normal execution. Since application code execution
in all threads is stopped during this operation, a noticeable appli-
cation pause would result if it cannot be applied in an extremely
fast manner. The only operation supported on Stock Linux that can
be used to facilitate the C4 remap commit operation is a normal
remap (measured in 1). C4 would need to bring all threads to a
safe point, and hold them there for the duration of time that it takes
Linux to perform the remapping of the bulk page set. To address
the Remap Commit Rate limitations in stock Linux, we support a
batch preparation of virtual memory operations. Batch operations
are performed on a shadow page table without becoming visible to
the process threads, and a large batch of remap operations can be
prepared without requiring any application threads to be stopped
during the preparation phase. The prepared batch is then commit-
ted by the GC mechanism using a single “batch commit” operation
call to the kernel virtual memory subsystem. Since a batch commit
will typically be executed during a global safe point, the batch com-
mit operation is designed to complete in a matter of microseconds,
such that no perceivable application pauses will occur.

Table 2 compares stock Linux Remap Commit Rates established
in previously described sustainable remap rate tests and the time it
would take to perform 16GB of remaps, with the measured rate and
time it takes Linux enhanced with our virtual memory subsystem
to commit a 16GB batch of remap operations (prepared using az
mbatch remap() calls) using an az mbatch commit() call.

Active
Threads

Linux Modified Linux Speedup

0 43.58 GB/sec (360ms) 4734.85 TB/sec (3us) >100,000x
1 3.04 GB/sec (5s) 1488.10 TB/sec (11us) >480,000x
2 1.82 GB/sec (8s) 1166.04 TB/sec (14us) >640,000x
4 1.19 GB/sec (13s) 913.74 TB/sec (18us) >750,000x
8 897.65 MB/sec (18s) 801.28 TB/sec (20us) >890,000x
12 736.65 MB/sec (21s) 740.52 TB/sec (22us) >1,000,000x

Table 2. Comparison of peak mremap rates

• An Active Thread count of 0 was also included, since commits
will happen during a global safepoint, and it is therefore possi-
ble that no active threads would execute during the commit op-
eration. However, it should be noted that the number of threads
that may be active during the safepoint operations can also be
non-zero (which is why multiple thread counts are also modeled
in the test). While Application execution is held at a safepoint
during the remap commit operation, application threads may
still be actively executing runtime code while logically held at
the safepoint. E.g. runtime operations that occur under a sin-
gle bytecode and release the safepoint lock, such as I/O system
calls, long runtime calls, and JNI calls, are executed under a

84

logical safepoint, and may keep cpu cores busy during a remap
commit.

• An az mbatch commit() call produces a single global TLB in-
validate per call.

6. Heap Management
6.1 Tiered Allocation Spaces

C4 manages the heap in 2M sized physical pages. The alloca-
tion path uses a Thread Local Allocation Buffer (TLAB) mech-
anism [10] found in most enterprise virtual machines. Each Java
thread uses bump pointer allocation in its local allocation buffer. In
supporting concurrent compaction and remapping, C4 must also
adhere to a requirement for objects to not span relocation page
boundaries. These allocation and relocation schemes, while being
fast and supporting consistent application response times, can re-
sult in some headroom in the local buffer being wasted. The worst
case headroom wastage can be as high as 50%, if a program seri-
ally allocates objects of size (N/2+1)MB’s or N+1, where N is the
larger of the buffer size or the relocation page size. Other work such
as [16], try to deal with this waste by allocating fragmented objects
while [5] addresses this issue by maintaining two levels of alloca-
tion bins. To cap the worst case physical memory waste, while at
the same time containing the worst case blocking time of a muta-
tor waiting for a single object to be copied, we bin the objects into
three different size ranges, and handle the memory for each size
range differently. The three tiers are:
• Small Object Space: Contains objects less than 256 KB in size.

The region is managed as an array of 2 MB pages. Objects
in this space must not span page boundaries, and new object
allocation usually uses TLABs.

• Medium Object Space: Contains objects that are 256 KB and
larger, up to a maximum of 16 MB. The region is managed as
an array of 32 MB virtual blocks, physically allocated in 2MB
units. Objects in this space may span 2 MB pages, but must not
cross virtual block boundaries. Objects allocated within a block
will be aligned to 4 KB boundaries. We explain the need for this
in section 6.3.

• Large Object Space: Contains objects larger than those that
would fit in Small or Medium Space (larger than 16 MB). Un-
like Small Space and Medium Space where virtual memory is
organized into fixed sized chunks, virtual and physical mem-
ory is allocated in multiples of 2MB to fit the size of the ob-
ject being allocated. All objects in this space are allocated on
2MB aligned boundaries, with no two objects sharing a com-
mon 2MB page.

The Small and Medium tiers are managed using fixed sized virtual
blocks of memory, eliminating the possibility of fragmentation in
their memory space. In contrast, the Large Object space does incur
virtual address fragmentation. Since Large Space objects all reside
in dedicated 2MB pages, compacting the virtual space is a simple
matter of remapping the pages containing the objects to new virtual
locations using the same relocation scheme described in section 2.
As described, the tiered allocation spaces scheme limits the worst
case headroom waste to 12.5%. The worst case Small Object Space
waste is 12.5% (256KB out of 2MB). The worst case space waste
for both the Medium and Large Object Space is 11.1% (2MB out of
18MB). However, arbitrarily small worst case sizes can be similarly
engineered by modifying the object size thresholds and block sizes
in the scheme, as well as by adding additional tiers.

6.2 Allocation pathway

Objects that fit in the Small Object Space are allocated using
TLABs [10], on which we piggy-back the test for object size and
fit into the Small Object space. Each TLAB tracks a TLAB end-

of-region pointer, and a fast-allocation end-of-region pointer. The
TLAB end-of-region indicates the end of the 2 MB TLAB. The
fast-allocation end-of-region is checked by the fast path assembly
allocation code. It would never point more than 256 KB past the
top pointer, thus forcing middle size and large size object allocation
into the slow path. The slow path bumps forward the fast-allocation
end pointer as needed, until the actual TLAB end-of-region pointer
is reached.

Allocation in the Medium Object Space shares allocation blocks
across Java threads. A Java thread trying to allocate into a Medium
Object Space block claims the required sized chunk by atomically
updating the top pointer of the page.

Allocation in the Large Object Space is achieved by atomically
updating a global top pointer for the space.

6.3 Relocating medium space objects

Middle space blocks are compacted using an algorithm similar to
that of small space pages, combined with support for incrementally
copying object contents in 4 KB chunks as they are concurrently ac-
cessed. This reduces the copy delays imposed when a mutator tries
to access an unrelocated object of non trivial size. Compaction is
done with a protected page shattering virtual memory remap oper-
ation, followed later by a copying page healing merge operation,
defined below:

• Page Shattering Remap operation: Remaps virtual memory in
multiples of 4 KB pages to a new virtual address, shattering
contiguous 2MB mappings in the process. The new address is
protected against both read and write access, forcing protection
faults if the contents are accessed prior to page healing.

• Page Heal/Merge operation: A 2 MB aligned compacted region
comprised of previously shattered 4KB virtual memory pages
is “healed” by the collector to form a 2MB virtual mapping.
The healing operation uses a contiguous 2 MB physical page as
a copy-on-demand target, sequentially copying the individual
4KB contents to their proper position in the target physical page
while at the same time supporting asynchronous on-demand
fault driven copying of 4KB section as the mutators access
them. Once the 4KB sections of a 2MB aligned region have
been copied to the target physical page, their original physical
pages become free and are recycled, facilitating hand-over-hand
compaction of the Medium Space.

The shattering remap and healing merge operations are among
the features in the new Linux virtual memory subsystem discussed
in the section 5 . With these two new calls, the relocation algorithm
for Medium Space objects becomes:

1. Remap each live object to a new 4KB aligned location in target
to-blocks. The new virtual address is shattered and protected in
the same operation.

2. Publish the new virtual address as the forwarding pointer for
each object.

3. Heal/Merge each 2MB page in the to-blocks in a hand-over-
hand manner, using the physical memory released from each
2MB Heal/Merge operation as a target resource for the next
Heal/Merge operation.

4. As Mutators concurrently access Middle Space objects during
the relocation, faults are used to heal only the 4KB section
in which the fault occurred, minimizing the mutator blocking
time.

The 4 KB remap granularity is the source of needing to allocate
medium sized objects at a 4 KB alignment.

85

7. Experiments
Our experiments are intended to highlight the behavior of simul-
taneous generational concurrency by comparing the response time
behavior of C4 to that of other collectors. We compared C4 with
an intentionally crippled version of C4, with simultaneous gener-
ational concurrency disabled (dubbed C4-NoConcYoung), as well
as with the OpenJDK HotSpot CMS and Parallel collectors.

C4 is intended to maintain consistent response times in transac-
tion oriented programs running business logic and interactive server
logic on modern servers, using multi-GB heaps and live sets, sus-
taining multi-GB/sec allocation rates, as well as common applica-
tion and data patterns found in such enterprise applications. With
low end commodity servers reaching 96GB or more in main mem-
ory capacity in 2011, it is surprisingly hard to find widely used
server scale benchmarks that measure the response time envelope
of applications that would attempt to use such capacities within
managed runtimes. Large, mutating object caches that occupy sig-
nificant portions of the heap, fat state-full sessions, rapid messag-
ing with in-memory replication, and large phase shifts in program
data (such as catalog updates or cache hydration) are all common
scenarios in server applications, but benchmarks that require more
than 1-2GB of live state per runtime instance (1% of a modern
commodity server’s capacity) are virtually non-existent. Further-
more, industry benchmarks that do include response time criteria
typically use pass/fail criteria that would be completely unaccept-
able for business applications - with most including average and
90%’ile response times and standard deviation requirements, but
no max time, 99.9%’ile, or even 99%’ile requirements.

Since response time behavior under sustainable load is the crit-
ical measure of a collector’s operational envelope that we are in-
terested in, we constructed a simple test bench that demonstrated
the worst case response time behavior of various collector config-
urations. The test bench measured response times for an identical
working set workload run on various collector and heap size config-
urations. A modified version of the commonly used SPECjbb2005
transactional throughput workload was used, changed to include
a modest 2GB live set cache of variable sized objects that churns
at a slight newly cached object rate of about 20MB/sec. The test
bench also included a mechanism to measure the response time
characteristics of transactions throughout the run. The modified
SPECjbb2005 workload was run for prolonged constant-load runs
with 4 warehouses, and we focused our measurements on worst
case response times seen in sustained execution. The tests were
all executed on the same hardware setup; a 2 socket, 12 core In-
tel x5680 server with 96GB of memory. On this platform, the test
bench exhibits an allocation rate of about 1.2GB/sec, and live sets
were consistently measured at about 2.5GB. All runs were executed
at least long enough to proceed through multiple full heap collec-
tion cycles, and to allow the normal object churn and heap fragmen-
tation to produce at least one major compaction event. The worst
case response time for each run was collected and plotted. Figure 4
shows the results, depicting worst case response time of the various
collectors at different heap sizes. For reference, Figure 5 provides
the test bench throughput measured for each test3.

As expected the worst case response times of collectors that do
not perform concurrent compaction [i.e. CMS and ParallelGC] start
off at multi-second levels, and get significantly worse as the heap

3 While measuring raw throughput is not the objective of these tests (non-
SLA-sustaining throughput numbers are generally meaningless for produc-
tion server environments), Figure 5 shows that C4 closely matches Paral-
lelGC in throughput (to within 1-6% depending on heap size) on this test
bench workload. Average latencies, which are also not the objective here,
can be directly derived from throughput, knowing that exactly 4 concurrent
threads were transacting at all times.

Figure 4. Worst case response times

Figure 5. Test Bench Raw Throughput

size grows, even with the relatively modest 2.5GB live sets main-
tained across all tests. C4-NoConcYoung, due to its lack of simul-
taneous generational concurrency, exhibits problems maintaining
pauseless operation and low response times when the heap size is
not large enough to absorb the 1.2GB/sec allocation rate during full
heap collections, and its results improve with heap size (reaching
pauseless operation at 24GB). C4 exhibits a wide operating range
with consistent response times, and is able to sustain pauseless op-
eration at the test bench’s allocation rate even with relatively low
amounts of empty heap.

8. Related Work
The idea of using common page-protection hardware to support
GC has been around for a while [1]. Appel et al [1] protect pages
that may contain objects with non-forwarded pointers (initially all
pages). Accessing a protected page causes an OS trap which the
GC handles by forwarding all pointers on that page, then clearing
the page protection. Compressor [13] uses techniques similar to our
work and Pauseless GC [7], in that they protect the to-virtual-space.
They update the roots to point to their referents’ new locations at
a safepoint and the mutator threads are then allowed to run. Their
mutator threads encounter and use access violation traps to fixup
the references they follow.

Incremental and low-pause-time collectors are also becoming
popular again. Pizlo et al [15] discuss three such algorithms. The
Chicken algorithm uses a Brooks-style read barrier and a wait-free
“aborting” write barrier that in the fast path only requires a read op-
eration and a branch followed by the original write operation. The
Stopless algorithm [14] uses an expanded object model with tem-

86

porary object while the Clover algorithm relies on a probabilistic
model and writes a random value to a field and does field by field
copy. It uses this technique in conjunction with a barrier to provide
concurrency.

Attempts to deal with the stop-the-world atomic nature of young
generation collection are relatively new. While we are not aware of
concurrent young generation collectors, [11] presents a stop-the-
world incremental young generation collector for real time systems.
The algorithm uses a combination of a read-barrier and a write-
barrier to capture remembered set changes during incremental col-
lection.

9. Conclusions
C4 is a generational, continuously concurrent compacting collec-
tor algorithm, it expands on the Pauseless GC algorithm [7] by in-
cluding a generational form of a self healing Loaded Value Bar-
rier (LVB), supporting simultaneous concurrent generational col-
lection, as well as an enhanced heap management scheme that re-
duces worst case space waste across the board.

C4 is currently included in commercially shipping JVMs deliv-
ered as a pure software platform on commodity X86 hardware, and
demonstrates a two-orders-of-magnitude improvement in sustain-
able [worst case] response times compared to both stop-the-world-
ParallelGC and mostly-concurrent CMS [8] collectors executing on
identical hardware, across a wide range of heap sizes.

The C4 implementation currently supports heap sizes up to
670GB on X86-64 hardware, and while this represents some signif-
icant headroom compared to the commonly sold and used servers,
commercially available commodity servers holding 1TB and 2TB
can already be purchased at surprisingly low cost points as of this
writing. As explained in the implementation notes (see Section 4),
while the C4 algorithm is fully concurrent (with no required global
stop-the-world pauses), the current C4 implementation does per-
form some very short stop-the-world phase synchronization oper-
ations for practical engineering complexity reasons. While these
operations now measure in the sub-millisecond range on modern
X86 servers, future work may include further improvement, poten-
tially fully implementing the complete concurrent algorithm, and
expanding the supported heap sizes to 2TB and beyond.

A. Appendix: Metadata encoding and LVB
pseudocode

Section 2 describes C4’s Loaded Value Barrier (LVB), its inter-
actions with reference metadata, NMT state, and page protection.
The specified LVB behavior and reference metadata encoding can
be implemented in a wide variety of ways. This appendix discusses
some of the encoding options and presents an example encoding
and matching pseudocode for LVB logic.

For LVB to correctly impose the marked-through invariant on
loaded references described in section 2.1, metadata describing the
reference’s NMT state and the reference’s generation (the GC gen-
eration in which the object that the reference points to resides) must
be associated with each reference. The most straightforward way to
associate metadata with the reference is to store it within a 64 bit
reference field, using bits that are not interpreted as addresses. Ig-
noring the metadata bits for addressing purposes can be achieved
by stripping them off of the reference value ahead of the using
the value for addressing purposes. Alternatively, on architectures
where such stripping imposes a high overhead, virtual memory
multi-mapping or aliasing can be used such that, otherwise identi-
cal addresses (for all metadata bit value combinations) are mapped
to the same physical memory contents. Our enhanced Linux virtual
memory subsystem includes support for efficiently aliasing 1GB
aligned address regions to each other, such that any virtual memory

operation applied to an address in an aliased region would apply
identically to all the addresses aliased to it as well.

The reference metadata bit-field itself can be encoded in various
ways. The simplest examples would encode NMT state using a sin-
gle bit, and encode the reference generation (young or old) using
a single, separate bit. However, other considerations and potential
uses for metadata encodings exist. For example, for various prac-
tical runtime implementation considerations, it is useful to have
NULL values and non-heap pointers encoded such that their inter-
pretation as a reference value would not appear to be in either the
old or young generations, leading to a useful encoding of a multi-
bit “SpaceID” where the young and old generations occupy two of
the available non-zero spaceIDs. Additional SpaceIDs can be useful
for purposes that are either orthogonal to or outside the scope of C4
(e.g., stack-local and frame local allocation space identifiers, such
as those described in [17]). When encodings with a larger num-
ber of spaceIDs is desirable, a combined SpaceID+NMT encoding
in a common bit field becomes useful for address space efficiency
purposes, avoiding the “waste” of an entire bit on NMT state for
SpaceIDs that do not require it.

In the interest of simplicity, we describe a simple encoding
using 2 bits for SpaceID, and a single bit for recording NMT
state. Figure 6 shows the layout of this metadata in a 64 bit ob-
ject reference. Figure 7 describes the SpaceIDs field value inter-
pretation, and gives pseudocode for an LVB implementation with
the metadata encoding that matches the discussion in sections 2.1
through 2.4 .

Figure 6. Object Reference Word Layout

References
[1] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection

on stock multiprocessors. In Proceedings of the ACM SIGPLAN 1988
conference on Programming Language Design and Implementation,
PLDI ’88, pages 11–20, New York, NY, USA, 1988. ACM. ISBN
0-89791-269-1. doi: http://doi.acm.org/10.1145/53990.53992. URL
http://doi.acm.org/10.1145/53990.53992.

[2] Azul Systems Inc. Managed Runtime Initiative.
http://www.managedruntime.org/, 2010.

[3] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Pro-
ceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’03, pages 285–
298, New York, NY, USA, 2003. ACM. ISBN 1-58113-
628-5. doi: http://doi.acm.org/10.1145/604131.604155. URL
http://doi.acm.org/10.1145/604131.604155.

[4] H. G. Baker, Jr. List processing in real time on a serial
computer. Commun. ACM, 21:280–294, April 1978. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/359460.359470. URL
http://doi.acm.org/10.1145/359460.359470.

[5] S. M. Blackburn and K. S. McKinley. Immix: a mark-region garbage
collector with space efficiency, fast collection, and mutator perfor-
mance. In Proceedings of the 2008 ACM SIGPLAN conference on
Programming Language Design and Implementation, PLDI ’08, pages
22–32, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-
860-2. doi: http://doi.acm.org/10.1145/1375581.1375586. URL
http://doi.acm.org/10.1145/1375581.1375586.

87

struct Reference
{
unsigned inPageVA : 21; // bits 0-20
unsigned PageNumber: 21; // bits 21-41
unsigned NMT : 1; // bit 42
unsigned SpaceID : 2; // bits 43-44
unsigned unused : 19; // bits 45-63

};

int Expected_NMT_Value[4] = {0, 0, 0, 0};

// Space ID values:
// 00 NULL and non-heap pointers
// 01 Old Generation references
// 10 New Generation references
// 11 Unused

LVB pseudocode:

doLVB(void *address, struct Reference &value)
{
int trigger = 0;
if (value.NMT != Expected_NMT_Value[value.SpaceID])

trigger |= NMT_Trigger;
if (value.pageNumber is protected)

trigger |= Reloc_Trigger;
if (trigger != 0)

value = doLVBSlowPathHandling(address, value, trigger);
}

doLVBSlowPathHandling(void* address, struct Reference &value, int trigger)
{
struct Reference oldValue = value;

// Fix the trigger condition(s):
if (trigger | NMT_Trigger) {

value.NMT = !value.NMT;
QueueReferenceToMarker(value);

}
if (trigger | Reloc_Trigger) {

if (ObjectIsNotYetRelocated(value)) {
relocateObjectAt(value);

}
value = LookupNewObjectLocation(value);

}

// Heal source address:
AtomicCompareAndSwap(address, oldValue, value);

return value;
}

Figure 7. LVB Pseudocode

[6] R. A. Brooks. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. In Proceedings
of the 1984 ACM Symposium on LISP and functional programming,
LFP ’84, pages 256–262, New York, NY, USA, 1984. ACM. ISBN 0-
89791-142-3. doi: http://doi.acm.org/10.1145/800055.802042. URL
http://doi.acm.org/10.1145/800055.802042.

[7] C. Click, G. Tene, and M. Wolf. The Pauseless GC algo-
rithm. In Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments, VEE ’05, pages
46–56, New York, NY, USA, 2005. ACM. ISBN 1-59593-
047-7. doi: http://doi.acm.org/10.1145/1064979.1064988. URL
http://doi.acm.org/10.1145/1064979.1064988.

[8] D. Detlefs and T. Printezis. A Generational Mostly-concurrent
Garbage Collector. Technical report, Mountain View, CA, USA, 2000.

[9] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-
first garbage collection. In Proceedings of the 4th Interna-
tional Symposium on Memory Management, ISMM ’04, pages
37–48, New York, NY, USA, 2004. ACM. ISBN 1-58113-
945-4. doi: http://doi.acm.org/10.1145/1029873.1029879. URL
http://doi.acm.org/10.1145/1029873.1029879.

[10] D. Dice, A. Garthwaite, and D. White. Supporting per-processor local-
allocation buffers using multi-processor restartable critical sections.
Technical report, Mountain View, CA, USA, 2004.

[11] D. Frampton, D. F. Bacon, P. Cheng, and D. Grove. Generational Real-
Time Garbage Collection: A Three-Part Invention for Young Objects.
ECOOP ’07, pages 101–125.

[12] U. Hölzle. A Fast Write Barrier for Generational Garbage Collectors.
In OOPSLA/ECOOP ’93 Workshop on Garbage Collection in Object-
Oriented Systems, 1993.

[13] H. Kermany and E. Petrank. The Compressor: concurrent,
incremental, and parallel compaction. In Proceedings of
the 2006 ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation, PLDI ’06, pages 354–363,
New York, NY, USA, 2006. ACM. ISBN 1-59593-320-
4. doi: http://doi.acm.org/10.1145/1133981.1134023. URL
http://doi.acm.org/10.1145/1133981.1134023.

[14] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stopless: a
real-time garbage collector for multiprocessors. In Proceedings of
the 6th International Symposium on Memory Management, ISMM
’07, pages 159–172, New York, NY, USA, 2007. ACM. ISBN 978-
1-59593-893-0. doi: http://doi.acm.org/10.1145/1296907.1296927.
URL http://doi.acm.org/10.1145/1296907.1296927.

[15] F. Pizlo, E. Petrank, and B. Steensgaard. A study of concurrent real-
time garbage collectors. In Proceedings of the 2008 ACM SIGPLAN
conference on Programming Language Design and Implementation,
PLDI ’08, pages 33–44, New York, NY, USA, 2008. ACM. ISBN 978-
1-59593-860-2. doi: http://doi.acm.org/10.1145/1375581.1375587.
URL http://doi.acm.org/10.1145/1375581.1375587.

[16] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and
J. Vitek. Schism: fragmentation-tolerant real-time garbage collec-
tion. In Proceedings of the 2010 ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, PLDI ’10, pages
146–159, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-
0019-3. doi: http://doi.acm.org/10.1145/1806596.1806615. URL
http://doi.acm.org/10.1145/1806596.1806615.

[17] G. Tene, C. Click, M. Wolf, and I. Posva. Memory Management, 2006.
US Patent 7,117,318.

[18] D. Ungar. Generation Scavenging: A non-disruptive high per-
formance storage reclamation algorithm. In Proceedings of the
first ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, SDE 1, pages
157–167, New York, NY, USA, 1984. ACM. ISBN 0-89791-
131-8. doi: http://doi.acm.org/10.1145/800020.808261. URL
http://doi.acm.org/10.1145/800020.808261.

[19] M. T. Vechev, E. Yahav, and D. F. Bacon. Correctness-preserving
derivation of concurrent garbage collection algorithms. In Pro-
ceedings of the 2006 ACM SIGPLAN conference on Program-
ming Language Design and Implementation, PLDI ’06, pages
341–353, New York, NY, USA, 2006. ACM. ISBN 1-59593-
320-4. doi: http://doi.acm.org/10.1145/1133981.1134022. URL
http://doi.acm.org/10.1145/1133981.1134022.

[20] P. R. Wilson. Uniprocessor Garbage Collection Tech-
niques. In Proceedings of the International Workshop on
Memory Management, IWMM ’92, pages 1–42, London,
UK, 1992. Springer-Verlag. ISBN 3-540-55940-X. URL
http://portal.acm.org/citation.cfm?id=645648.664824.

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

