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10 Mins That Saved Southwest Airlines
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Apps That Require Much Lower Latency

Payments Processing

Latency: 20 - 200 ms

Electronic Trading

Latency: 20 - 100s μs
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Garbage Collection Might Make Things 
Unpredictable
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Unless You Select The Right Java Stack



Azul Zing - Java without the pauses

Click to add text
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An overview of Azul Zing

Gil Tene, CTO & co-Founder, Azul Systems
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This is <Your App> on HotSpot

This is <Your App> on Zing

Any Questions?

A simple visual summary
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A JVM for Linux/x86 (servers, clouds, containers)

“Not just Fast. Always Fast.”

Improves application behavior metrics

Increases practical carrying capacity

Makes developers and their managers happier

Delivers a continuously responsive execution platform

ELIMINATES Garbage Collection as a concern

Reduces negative impacts of frequent code deployment

VERY wide operating range

from GBs to TBs, from low latency to streaming and batch

Azul Zing
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Areas where Azul Zing shines

Wherever speed & responsiveness 
matter:

Human response times…

Machine-to-machine “stuff”…

“Low latency” or “Latency Sensitive"…

“Large” data and in-memory analytics…
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Azul Zing shines in 
Java based infrastructure… 

Cassandra
Solr

Elastic

LuceneKafka

HBase Zookeeper
Flink

Pinot

…

…

…

Aeron

…

Spark

……

…

GridGain
Ignite

HDFS

…

Storm

…
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Zing shines in Java applications 

API Gateways Application
containers

Back end

Front End

In memory
analytics

…

…

Streaming
applications

…
…

… …

…
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Azul Zing’s main feature areas

C4:  GC, solved.

Falcon:  Powerful JIT compiler. 
Speed. 

ReadyNow:  Warmup/Startup. DevOps.



Speed

What is it good for?
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Are you fast?
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Are you fast when new code rolls out?
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Are you fast when it matters?
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Are you fast at Market Open?
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Are you reliably fast?
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??

What does being “fast” mean?

Sp
ee
d

Time
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Time

What does being “fast” mean?



Speed in the Java world…
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Falcon

Falcon is basically about speed
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ReadyNow is focused on warmup
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 C4

C4 takes out the stalls
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FalconReadyNow

 C4

Start Fast, Go Fast, Stay Fast
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GC Tuning
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Java GC tuning is “hard”…

Examples of actual command line GC tuning parameters:


Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g 

-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12

-XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M

-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled

-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …



A few more GC tuning flags

Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”
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The complete guide to 
modern GC tuning**

java -Xmx40g

java -Xmx20g


java -Xmx10g


 java -Xmx5g

** It’s 2019, Zing is widely available. Tweaking 10s of GC flags is a thing of the past.
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Cassandra under heavy load, Intel E5-2690 v4 server

Yup, that’s the 1 msec mark



A real  world use case with In Memory Computing:

GridGain in a Credit Card payments processing application
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Payments Benchmark: Configuration

● 3 nodes GridGain cluster
○ 3 x AWS i3en.6xlarge
○ 72 cores
○ 600 GB RAM and 45 TB disk

● Tested Scenarios
○ Azul Zing C4 vs. OpenJDK G1 for
○ 100% in RAM, no disk (200 GB)
○ 100% in RAM, 100% on disk (200 GB)
○ 30% in RAM, 100% on disk (600 GB)
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Payments Benchmark: Workload

● Each transactions accesses 20 records
● Distributed Transactional Reads

○ Target throughput - 1000 reads/sec
○ Target latency - 15ms for 99.99th percentile

● Distributed Transactional Updates
○ Target throughput - 2000 updates/sec
○ Target latency - 50ms for 99.99th percentile
○ RAM and disk have to be updated for primary and backup copies

● Metrics Collection 
○ Micrometer and jHiccup
○ 2 hours run
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Transactional Reads
100% in RAM (200 GB)
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Transactional Reads
100% in RAM (200 GB) [equalized scale]
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- target latency

Transactional Reads
100% in RAM (200 GB) [equalized scale]
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Transactional Updates:
100% in RAM (200 GB)
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Transactional Updates
100% in RAM (200 GB) [equalized scale]
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- target latency

Transactional Updates
100% in RAM (200 GB) [equalized scale]
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Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB)
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Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]
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- target latency

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]
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Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB)
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Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]
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- target latency

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]



GridGain - In-Memory Computing Platform That Scales

Click to add text
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GridGain Let’s Us Scale To Terabytes
Across RAM and Disk Space

Unlimited off-heap memory
and disk space for data

Java Heap for objects 
generated in runtime
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Transactional Persistence

● Distributed Persistence Tier
○ Fully transactional and consistent
○ No need to cache 100% of data in RAM
○ No need to warm-up RAM on restarts

● Performance vs. Cost Tradeoff
○ Cache more for fastest performance
○ Cache less to reduce infrastructure costs
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Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB)
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Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]
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- target latency

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]
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Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB)
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Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]
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- target latency

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]
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Is Java Ready for Low-Latency Scenarios?

● Eliminate GC pauses with Azul 
Zing

● Scale Out with GridGain across 
RAM and Disk

● Select a configuration you need 
to meet infrastructure costs
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Q&A

Gil - @giltene

Denis - @denimagda




