
Enabling Java applications for low-latency use cases
at scale with Azul Zing and GridGain

Gil Tene 
CTO & Co-Founder 

Azul Systems

Denis Magda 
VP, Product Management 

GridGain Systems

2

10 Mins That Saved Southwest Airlines

3

Apps That Require Much Lower Latency

Payments Processing

Latency: 20 - 200 ms

Electronic Trading

Latency: 20 - 100s μs

4

Garbage Collection Might Make Things
Unpredictable

5

Unless You Select The Right Java Stack

Azul Zing - Java without the pauses

Click to add text

©2017 Azul Systems, Inc.

An overview of Azul Zing

Gil Tene, CTO & co-Founder, Azul Systems

©2017 Azul Systems, Inc.

This is <Your App> on HotSpot

This is <Your App> on Zing

Any Questions?

A simple visual summary

©2015 Azul Systems, Inc.

A JVM for Linux/x86 (servers, clouds, containers)

“Not just Fast. Always Fast.”

Improves application behavior metrics

Increases practical carrying capacity

Makes developers and their managers happier

Delivers a continuously responsive execution platform

ELIMINATES Garbage Collection as a concern

Reduces negative impacts of frequent code deployment

VERY wide operating range

from GBs to TBs, from low latency to streaming and batch

Azul Zing

©2017 Azul Systems, Inc.

Areas where Azul Zing shines

Wherever speed & responsiveness
matter:

Human response times…

Machine-to-machine “stuff”…

“Low latency” or “Latency Sensitive"…

“Large” data and in-memory analytics…

©2017 Azul Systems, Inc.

Azul Zing shines in
Java based infrastructure…

Cassandra
Solr

Elastic

LuceneKafka

HBase Zookeeper
Flink

Pinot

…

…

…

Aeron

…

Spark

……

…

GridGain
Ignite

HDFS

…

Storm

…

©2017 Azul Systems, Inc.

Zing shines in Java applications

API Gateways Application
containers

Back end

Front End

In memory
analytics

…

…

Streaming
applications

…
…

… …

…

©2017 Azul Systems, Inc.

Azul Zing’s main feature areas

C4: GC, solved.

Falcon: Powerful JIT compiler.
Speed.

ReadyNow: Warmup/Startup. DevOps.

Speed

What is it good for?

©2017 Azul Systems, Inc.

Are you fast?

©2017 Azul Systems, Inc.

Are you fast when new code rolls out?

©2017 Azul Systems, Inc.

Are you fast when it matters?

©2017 Azul Systems, Inc.

Are you fast at Market Open?

©2017 Azul Systems, Inc.

Are you reliably fast?

©2017 Azul Systems, Inc.

??

What does being “fast” mean?

Sp
ee
d

Time

©2017 Azul Systems, Inc.

Sp
ee
d

Time

What does being “fast” mean?

Speed in the Java world…

©2017 Azul Systems, Inc.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Code	distribution	(by	optimization	level)

Interpreted	% Tier	1	(profiling)	% Optimized	%

Interpreted

Tier 1

(profiling) Optimized

©2017 Azul Systems, Inc.

0.00

5.00

10.00

15.00

20.00

25.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Response	time
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized GC	Pause

©2017 Azul Systems, Inc.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized

©2017 Azul Systems, Inc.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized

Falcon

Falcon is basically about speed

©2017 Azul Systems, Inc.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized Optimized	(Zing)

FalconReadyNow

ReadyNow is focused on warmup

©2017 Azul Systems, Inc.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized Optimized	(Zing)

FalconReadyNow

 C4

C4 takes out the stalls

©2017 Azul Systems, Inc.

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Speed	
(with	contribution	by	optimization	level)

Interpreted Tier1	(profiling) Optimized Optimized	(Zing)

FalconReadyNow

 C4

Start Fast, Go Fast, Stay Fast

©2015 Azul Systems, Inc.

GC Tuning

©2015 Azul Systems, Inc.

Java GC tuning is “hard”…

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g

-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12

-XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M

-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled

-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …

A few more GC tuning flags

Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”

©2015 Azul Systems, Inc.

The complete guide to
modern GC tuning**

java -Xmx40g

java -Xmx20g

java -Xmx10g

 java -Xmx5g

** It’s 2019, Zing is widely available. Tweaking 10s of GC flags is a thing of the past.

©2017 Azul Systems, Inc.

Cassandra under heavy load, Intel E5-2690 v4 server

Yup, that’s the 1 msec mark

A real world use case with In Memory Computing:

GridGain in a Credit Card payments processing application

36

Payments Benchmark: Configuration

● 3 nodes GridGain cluster
○ 3 x AWS i3en.6xlarge
○ 72 cores
○ 600 GB RAM and 45 TB disk

● Tested Scenarios
○ Azul Zing C4 vs. OpenJDK G1 for
○ 100% in RAM, no disk (200 GB)
○ 100% in RAM, 100% on disk (200 GB)
○ 30% in RAM, 100% on disk (600 GB)

37

Payments Benchmark: Workload

● Each transactions accesses 20 records
● Distributed Transactional Reads

○ Target throughput - 1000 reads/sec
○ Target latency - 15ms for 99.99th percentile

● Distributed Transactional Updates
○ Target throughput - 2000 updates/sec
○ Target latency - 50ms for 99.99th percentile
○ RAM and disk have to be updated for primary and backup copies

● Metrics Collection
○ Micrometer and jHiccup
○ 2 hours run

38

Transactional Reads
100% in RAM (200 GB)

39

Transactional Reads
100% in RAM (200 GB) [equalized scale]

40

- target latency

Transactional Reads
100% in RAM (200 GB) [equalized scale]

41

Transactional Updates:
100% in RAM (200 GB)

42

Transactional Updates
100% in RAM (200 GB) [equalized scale]

43

- target latency

Transactional Updates
100% in RAM (200 GB) [equalized scale]

44

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB)

45

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

46

- target latency

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

47

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB)

48

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

49

- target latency

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

GridGain - In-Memory Computing Platform That Scales

Click to add text

51

GridGain Let’s Us Scale To Terabytes
Across RAM and Disk Space

Unlimited off-heap memory
and disk space for data

Java Heap for objects
generated in runtime

52

Transactional Persistence

● Distributed Persistence Tier
○ Fully transactional and consistent
○ No need to cache 100% of data in RAM
○ No need to warm-up RAM on restarts

● Performance vs. Cost Tradeoff
○ Cache more for fastest performance
○ Cache less to reduce infrastructure costs

53

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB)

54

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

55

- target latency

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

56

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB)

57

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

58

- target latency

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

59

Is Java Ready for Low-Latency Scenarios?

● Eliminate GC pauses with Azul
Zing

● Scale Out with GridGain across
RAM and Disk

● Select a configuration you need
to meet infrastructure costs

60

Q&A

Gil - @giltene

Denis - @denimagda

