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Enabling Java applications for low-latency use cases
at scale with Azul Zing and GridGain

Gil Tene Denis Magda
CTO & Co-Founder VP, Product Management
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10 Mins That Saved Southwest Airlines




Apps That Require Much Lower Latency

Payments Processing Electronic Trading

Latency: 20 - 200 ms




Garbage Collection Might Make Things
Unpredictable




Unless You Select The Right Java Stack




Azul Zing - Java without the pauses

Click to add text
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An overview of Azul Zing

Gil Tene, CTO & co-Founder, Azul Systems
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A simple visual summary &

This is <Your App> on HotSpot

This is <Your App> on Zing

Any Questions?



Azul Zing &

@ A JVM for Linux/x86 (servers, clouds, containers)

@ "Not just Fast. Always Fast”

@ Improves application behavior metrics

@ Increases practical carrying capacity

@ Makes developers and their managers happier
@ Delivers a continuously responsive execution platform

@ ELIMINATES Garbage Collection as a concern

@ Reduces negative impacts of frequent code deployment
@ VERY wide operating range

@ from GBs to TBs, from low latency to streaming and batch
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Areas where Azul Zing shines "

@ Wherever speed & responsiveness
matter:

@ Human response times...
@ Machine-to-machine “stuff”...

@ “"Low latency” or “Latency Sensitive"...

® “Large” data and in-memory analytics...




Azul Zing shines in
Java based infrastructure...

Solr
Cassandra Elastic
Kafka Lucene GridGain
Ignite
HBase Zookeeper
Flink
HDFS Pinot

Aeron

F\ Spark Storm
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4R Zing shines in Java applications

API Gateways Application
containers
Back end
Front End
Streaming In memory
analytics

applications



Azul Zings main feature areas

@ Cé: GC, solved.
@ Falcon: Powerful JIT compiler.
Speed.

@ ReadyNow: Warmup/Startup. DevOps.
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Are you fast?
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What does being “fast” mean?




What does being “fast” mean?







Code distribution (by optimization level)

30.00 40.00 50.00 60.00

Interpreted % Tier 1 (profiling) % Optimized %
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©2017 Azul Systems, Inc.

Response time
(with contribution by optimization level)

30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Interpreted Tierl (profiling) Optimized ™ GC Pause




Speed
(with contribution by optimization level)
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20.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized
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Falcon is basically about speed

Speed
(with contribution by optimization level)

Falcon

2

40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized




ReadyNow is focused on warmup

Speed
(with contribution by optimization level)

ReadyNow Falcon

30.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized m Optimized (Zing)
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C4 takes out the stalls

Speed
(with contribution by optimization level)

ReadyNow Falcon

30.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized m Optimized (Zing)
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Start Fast, Go Fast, Stay Fast

Speed
(with contribution by optimization level)

ReadyNow Falcon

30.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized m Optimized (Zing)
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Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M _-XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewsSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarksweepSCsiXiNiax TenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizelnBytes=256m ...

Java -Xms8g -Xmx8g -Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTracelnFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...
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A few more GC tuning flags
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Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”



The complete guide to
modern GC tuning**

Java -Xmx40g
Java -Xmx20g

Java -Xmx10g

Java -Xmx5g

** It's 2019, Zing is widely available. Tweaking 10s of GC flags is a thing of the past.
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A real world use case with In Memory Computing:

GridGain in a Credit Card payments processing application
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Payments Benchmark: Configuration

e 3 nodes GridGain cluster
o 3 x AWS i3en.6xlarge
o 72 cores
o 600 GB RAM and 45 TB disk

e Tested Scenarios
o Azul Zing C4 vs. OpendDK G1 for
o 100% in RAM, no disk (200 GB)
o 100% in RAM, 100% on disk (200 GB)
o 30% in RAM, 100% on disk (600 GB)
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Payments Benchmark: Workload

e Each transactions accesses 20 records

e Distributed Transactional Reads
o Target throughput - 1000 reads/sec
o Target latency - 15ms for 99.99th percentile

e Distributed Transactional Updates
o Target throughput - 2000 updates/sec
o Target latency - 50ms for 99.99th percentile
o RAM and disk have to be updated for primary and backup copies

Metrics Collection
o  Micrometer and jHiccup
o 2 hours run
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Transactional Reads
100% in RAM (200 GB)




Transactional Reads
100% in RAM (200 GB) [equalized scal€e]




Transactional Reads

100% in RAM (200 GB) [equalized scal€e]

— - target latency




Transactional Updates:
100% in RAM (200 GB)




Transactional Updates
100% in RAM (200 GB) [equalized scal€e]




Transactional Updates

100% in RAM (200 GB) [equalized scal€e]

— - target latency




Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB)




Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]




Transactional Reads With Persistence

100% in RAM, 100% on Disk (200 GB) [equalized scale]

— - target latency




Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB)




Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]




Transactional Updates With Persistence

100% in RAM, 100% on Disk (200 GB) [equalized scale]

— - target latency




GridGain - In-Memory Computing Platform That Scales

Click to add text
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GridGain Let’s Us Scale To Terabytes

Across RAM and Disk Space

Unlimited off-heap memory Java Heap for objects
and disk space for data generated in runtime




Transactional Persistence

e Distributed Persistence Tier
o Fully transactional and consistent
o No need to cache 100% of data in RAM
o No need to warm-up RAM on restarts

Server Node

2. Persist
—_— Write-Ahead Log

e Performance vs. Cost Tradeoff
o Cache more for fastest performance
o Cache less to reduce infrastructure costs

In-Memory
In|Comuting e,

SUMMITlzom




Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB)




Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]




Transactional Reads with Persistence

30% in RAM, 100% on Disk (600 GB) [equalized scale]

— - target latency




Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB)




Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]




Transactional Updates with Persistence

30% in RAM, 100% on Disk (600 GB) [equalized scale]

— - target latency




Is Java Ready for Low-Latency Scenarios?

e Eliminate GC pauses with Azul
Zing

e Scale Out with GridGain across
RAM and Disk

e Select a configuration you need
to meet infrastructure costs




Gil - @giltene

Denis - @denimagda
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