In-Memory
| n || Computing eer:,

SUMMITI20m0

Enabling Java applications for low-latency use cases
at scale with Azul Zing and GridGain

Gil Tene Denis Magda
CTO & Co-Founder VP, Product Management
Azul Systems GridGain Systems

"
Oy AzUL GridGain/ia

10 Mins That Saved Southwest Airlines

Apps That Require Much Lower Latency

Payments Processing Electronic Trading

Latency: 20 - 200 ms

Garbage Collection Might Make Things
Unpredictable

Unless You Select The Right Java Stack

Azul Zing - Java without the pauses

Click to add text

In-Memory
IN | Computing o

SUMMITI 200

1‘ \ -
- S 2=\ 3
An overview of Azul Zing

Gil Tene, CTO & co-Founder, Azul Systems

-
2

A simple visual summary &

This is <Your App> on HotSpot

This is <Your App> on Zing

Any Questions?

Azul Zing &

@ A JVM for Linux/x86 (servers, clouds, containers)

@ "Not just Fast. Always Fast”

@ Improves application behavior metrics

@ Increases practical carrying capacity

@ Makes developers and their managers happier
@ Delivers a continuously responsive execution platform

@ ELIMINATES Garbage Collection as a concern

@ Reduces negative impacts of frequent code deployment
@ VERY wide operating range

@ from GBs to TBs, from low latency to streaming and batch

©2015 Azul Systems, Inc.

Areas where Azul Zing shines "

@ Wherever speed & responsiveness
matter:

@ Human response times...
@ Machine-to-machine “stuff”...

@ “"Low latency” or “Latency Sensitive"...

® “Large” data and in-memory analytics...

Azul Zing shines in
Java based infrastructure...

Solr
Cassandra Elastic
Kafka Lucene GridGain
Ignite
HBase Zookeeper
Flink
HDFS Pinot

Aeron

F\ Spark Storm

\ 4

4R Zing shines in Java applications

API Gateways Application
containers
Back end
Front End
Streaming In memory
analytics

applications

Azul Zings main feature areas

@ Cé: GC, solved.
@ Falcon: Powerful JIT compiler.
Speed.

@ ReadyNow: Warmup/Startup. DevOps.

aﬁsﬁ’f

Are you fast?

©2017 Azul Systems, Inc.

What does being “fast” mean?

What does being “fast” mean?

Code distribution (by optimization level)

30.00 40.00 50.00 60.00

Interpreted % Tier 1 (profiling) % Optimized %

©2017 Azul Systems, Inc.

15.00

©2017 Azul Systems, Inc.

Response time
(with contribution by optimization level)

30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Interpreted Tierl (profiling) Optimized ™ GC Pause

Speed
(with contribution by optimization level)

“CenMNRIERIERY

20.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized

©2017 Azul Systems, Inc.

Falcon is basically about speed

Speed
(with contribution by optimization level)

Falcon

2

40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized

ReadyNow is focused on warmup

Speed
(with contribution by optimization level)

ReadyNow Falcon

30.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized m Optimized (Zing)

©2017 Azul Systems, Inc.

C4 takes out the stalls

Speed
(with contribution by optimization level)

ReadyNow Falcon

30.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized m Optimized (Zing)

©2017 Azul Systems, Inc.

Start Fast, Go Fast, Stay Fast

Speed
(with contribution by optimization level)

ReadyNow Falcon

30.00 40.00 50.00 60.00 70.00

Interpreted Tierl (profiling) m Optimized m Optimized (Zing)

©2017 Azul Systems, Inc.

©2015 Azul Systems, Inc.

Java GC tuning is "hard”...

Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M _-XX:PermSize=32M -XX:MaxNewSize=2g
-XX:NewsSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarksweepSCsiXiNiax TenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizelnBytes=256m ...

Java -Xms8g -Xmx8g -Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTracelnFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC -Xnoclassgc ...

©2015 Azul Systems, Inc.

A few more GC tuning flags

2 E: £
ISOPUBNE: 8 s g, £% s = =
CMSLoopWarn z) £ 2 £ 52 £ £ 2 &
CHSScavengeBeforeRemark = PritReerencelC S 2 = cyspevistStacksize Ei5 £ PrintCHSStatistics £ = = §
ONSPreceatumeraor & =, _ , CHSorementafiset £ = 2 jicomninigenini: 2 B tcktTieals 5 OHShbortSematies's, = 2 <
EMSRemarkVennyarlant: £ égEc}ﬁlsnl:ty:caure}aﬁlt;MTEnahled = 5 CHSYieldSleepCount MaxGCMmorPauseMﬂIls: CHSPrecleankeflists? CHSSamplingran'z. = g S
WTgelint & =% § EEE thsucenentilittyle = = CHSPrntctsDumy CHSConcMarkMutile Eaphumphfterfullit £ 2 = 5
g g Sefgis et = 8 CHSBithapYieldQuantum / ExplicithClnvokesConcurrent & = £ §
b= S E2 5 Z%s (MSOIdPLABReactivityFactor = CMSIncrementalSafetyFactor &= E 3
£= £§25 3 o =5 ouvktshiontonacion 3 et WSty DNTIEERenElE < 5
S22 255 S BB sttt £ orluesebraiThrstol ey OISO
23 5385 55 St rnr}a FY"lrlls"s Ecm" g EMSIncrementalﬂutyﬂycleMlﬂNewSueThrealllncrease CMSCompactWhenClearAllSoftRefs HeapDumpPath
£8 SSE522 §EMSP:ch;g::::qifagléedegmgwt o |IEMSIﬂlasslllnlnzuhngMaxIntervaI CMSScheduleRemarkSamplingRatio. AdaptiveSizeMajor6CDecayTimeScale
g 2=25¥ma axAbortablePrecleanLoops
Sge= £ ggxms = ey (t:MSPeJmEenPrecleamngEnahIed ' [:MSPBTIIIGEIISWEBIIIﬂgEﬂﬂhlEdImtlatmgﬂeauDccunancyPen:ent
== ZEs eplenishintermediate 8
%g S ER jMSln|t|aﬂngPermﬂccnngncyFractmn I;rmttﬁﬂl‘.cTTaskI;meStampsDlsahleEXpllclth E
] = S22 GiHeapRegionSize rint6CTimeStamps 2
5= § < é'ﬁ VErnose. gcp arbCArrayScanChunk CMSAhonahIePrecleaananrkPerIteratlunuwm,nsmmwsﬂe ax erm Ize g

.CMSParaIIeIRemarkEnabIe

[]
>
=
=

CMSPrecleanSurvivors2 CMSExtrapolateSweep printHea

CMSTriggerRatio HeapMaximumCompactioninterval
PnntCIassﬂlstograthsrFuIIGE CMSPLABRecordAlways

MSClassUnloading Enahledu seCoiie arksweeppﬁcmmm}gg:

Expllclt

e CMSSpi

=} 5 g arGCDesired0bjsFromOverflowlist 5
eap ump n ut emory rrﬂr S GCOverheadReportingPeriodMS
; SEE CMSAbortablePrecleanWaitMillis
CMSLargeSpltSurplusPercent cﬁ?ﬁffﬂﬂﬁ‘:ﬂﬂ"ﬂmggﬂm CHSParPromoteBlocksTollaim &3S PrinttCApplicationStoppedTime CHSIsToofullPrcentage
CHSDIGPLABReactvityCeiing =5 UpcommitioungBentnge ScavengeBeforeFUlGCE: = 2 pormitarSweepDeaiRati PrintCMSitiationStatistics
Bind6CTaskThreadsToCPUs <2 SWaxPermbeapbxpansion GCLockerlnvokesConcurrent g2 Eéﬂufggﬂ?'fa"“f#"mﬁ"ﬁ“f 6C0verheadReporting
L S5 £ hwobClecthauseMilis - Minkeapbetabytes = 25 Print(i{:‘i)ceg:i?s g oyt
= Jalausells EF S PemSze CHSURLABNumRefil bphgacor CHSPrecleanReflists o evabek
= eanlnnter 5.2 S CMSPrecleanlter InitialHeapSize l:MSIlleIdllf I
g = =E = CHSOiPLABMin Srls
= g2

Source: Word Cloud created by Frank Pavageau in his Devoxx FR 2012 presentation titled “Death by Pauses”

The complete guide to
modern GC tuning**

Java -Xmx40g
Java -Xmx20g

Java -Xmx10g

Java -Xmx5g

** It's 2019, Zing is widely available. Tweaking 10s of GC flags is a thing of the past.

©2017 Azul Systems, Inc.

A real world use case with In Memory Computing:

GridGain in a Credit Card payments processing application

In-Memory
IN | Computing o

SUMMITI 200

Payments Benchmark: Configuration

e 3 nodes GridGain cluster
o 3 x AWS i3en.6xlarge
o 72 cores
o 600 GB RAM and 45 TB disk

e Tested Scenarios
o Azul Zing C4 vs. OpendDK G1 for
o 100% in RAM, no disk (200 GB)
o 100% in RAM, 100% on disk (200 GB)
o 30% in RAM, 100% on disk (600 GB)

In-Memory
|n Compuilng S,

SUMMITIZ

Payments Benchmark: Workload

e Each transactions accesses 20 records

e Distributed Transactional Reads
o Target throughput - 1000 reads/sec
o Target latency - 15ms for 99.99th percentile

e Distributed Transactional Updates
o Target throughput - 2000 updates/sec
o Target latency - 50ms for 99.99th percentile
o RAM and disk have to be updated for primary and backup copies

Metrics Collection
o Micrometer and jHiccup
o 2 hours run

In-Memory
| N | Computing

Transactional Reads
100% in RAM (200 GB)

Transactional Reads
100% in RAM (200 GB) [equalized scal€e]

Transactional Reads

100% in RAM (200 GB) [equalized scal€e]

— - target latency

Transactional Updates:
100% in RAM (200 GB)

Transactional Updates
100% in RAM (200 GB) [equalized scal€e]

Transactional Updates

100% in RAM (200 GB) [equalized scal€e]

— - target latency

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB)

Transactional Reads With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

Transactional Reads With Persistence

100% in RAM, 100% on Disk (200 GB) [equalized scale]

— - target latency

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB)

Transactional Updates With Persistence
100% in RAM, 100% on Disk (200 GB) [equalized scale]

Transactional Updates With Persistence

100% in RAM, 100% on Disk (200 GB) [equalized scale]

— - target latency

GridGain - In-Memory Computing Platform That Scales

Click to add text

In-Memory
IN | Computing o

SUMMITI 200

GridGain Let’s Us Scale To Terabytes

Across RAM and Disk Space

Unlimited off-heap memory Java Heap for objects
and disk space for data generated in runtime

Transactional Persistence

e Distributed Persistence Tier
o Fully transactional and consistent
o No need to cache 100% of data in RAM
o No need to warm-up RAM on restarts

Server Node

2. Persist
—_— Write-Ahead Log

e Performance vs. Cost Tradeoff
o Cache more for fastest performance
o Cache less to reduce infrastructure costs

In-Memory
In|Comuting e,

SUMMITlzom

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB)

Transactional Reads with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

Transactional Reads with Persistence

30% in RAM, 100% on Disk (600 GB) [equalized scale]

— - target latency

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB)

Transactional Updates with Persistence
30% in RAM, 100% on Disk (600 GB) [equalized scale]

Transactional Updates with Persistence

30% in RAM, 100% on Disk (600 GB) [equalized scale]

— - target latency

Is Java Ready for Low-Latency Scenarios?

e Eliminate GC pauses with Azul
Zing

e Scale Out with GridGain across
RAM and Disk

e Select a configuration you need
to meet infrastructure costs

Gil - @giltene

Denis - @denimagda

In-Memory
In|Comuting e,

SUMMITlzom

