

 1

High-Performance Microservices Using Java

Technology Whitepaper

Azul Prime: Java At Speed.

A JVM Optimized For

Modern Hardware

2

Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

Azul has spent many years developing

solutions to these challenges

Using the latest hardware advances and, in this white

paper, we’ll explain how Azul Platform Prime addresses

the performance of bytecode interpretation and

adaptive compilation.

Introduction Java is consistently reported as the most

popular programming language on the planet. Many

other programming languages can be compiled into

bytecodes and run by the Java Virtual Machine (JVM)

in exactly the same way as compiled Java code. One

of the reasons for Java (and the JVMs) popularity is

how it abstracts away a number of things that

developers have always had to deal with in other

popular languages like C and C++. Java is famous for

being, “Write once, run anywhere” by virtue of its use

of an intermediate representation of application code

in the form of bytecodes. In addition, the JVM

allocates space for objects and automatically reclaims

this space when the objects are no longer required;

using what is referred to as garbage collection (GC).

With languages like C and C++, all memory

management must be handled explicitly by the

programmer, who must ensure that space no longer

required is freed. Otherwise the application will suffer

from the classic memory leak.

While these are great features for making a

developer’s life easier and produce more robust and

reliable code, they are not without impact. The

performance character-istics of applications running on

a traditional JVM can look very different to statically

compiled applications written in C and C++. Although

the overall performance of bytecodes in the JVM can

be as good as natively compiled code (and in some

situations can even exceed it), the JVM introduces

greater non-deterministic effects on the application

performance (i.e. it is not as easy to predict the level of

performance at any specific time).

Modern hardware includes numerous ways to improve

performance by the direct use of machine instructions

at the silicon level. Features like vector processing can

make a CPU appear to have a far higher clock speed

than it really does by enabling processing of multiple

data elements in a single instruction cycle.

Azul has spent many years developing solutions to

these challenges using the latest hardware advances

and, in this white paper, we’ll explain how Azul

Platform Prime addresses the performance of

bytecode interpretation and adaptive compilation.

This will cover two main areas:

• How the new Falcon just-in-time (JIT) compiler uses

features of modern processors to deliver better

overall performance in many cases.

• How the ReadyNow! feature of Azul Platform Prime

can eliminate the effects of traditional Java

application “warm-up”.

What Do We Mean By “Speed” For An Application?

When considering application performance, the ideal

graph looks like the one below.

Here we have a completely constant and predictable

level of performance that will provide consistent and

predictable response times for our clients. There are

really four things to consider when evaluating the

speed of your application:

1. Are you fast enough? What this question asks is

can your application deliver the required results within

the time your clients have specified. This is a typical

non-functional requirement. For example, “the system

will respond within 50ms 95% of the time”.

2. Are you fast when new code is deployed? With

most enterprises now using continuous integration and

continuous deployment, it is important that

3

Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

performance is unaffected when new versions of

production software are deployed.

3. Are you fast from the start? Often applications

need to do certain things when they start up such as

loading large sets of data into memory. The important

question here is how long it takes from starting an

application until it is running at full speed.

4. Are you reliably fast? Like the first question, this is

a primary non-functional requirement but viewed from

a load perspective rather than response time, e.g. “the

system must be able to process 10,000 transactions

per second”.

Unfortunately, no application has a performance graph

like the one above and when running an application on

a traditional JVM the graph will look very different.

Let’s start by looking at what the challenges are for the

JVM when executing your code.

Traditional JVM Performance Characteristics

When Java was first released, over twenty years ago,

the designers took a different approach to executing

applications to the way popular languages had used

up until that point. Traditionally, source code was

compiled into a set of native instructions for a specific

platform (a combination of the processor and

operating system on which the application would run).

This is referred to as Ahead of Time (AOT) or static

compilation. This fixes the platform that the

application runs on, which means separate binaries

must be generated for each platform the application

will support.

With Java, the source files are compiled into class files

that contain bytecodes. Bytecodes are instructions for

a virtual machine, i.e. not one that uses any real

processor or operating system. The class files are

loaded by the JVM, which converts them to the

machine instructions used by the underlying hardware

and system calls for the chosen operating system.

Some of this work is very simple, with a straightforward

mapping between virtual and machine instructions.

For example, the JVM has an opcode, ishl, for a logical

shift left of an integer; this maps directly in the Intel x86

instruction set to the SHL opcode. However, many

conversions from bytecodes to real instructions are

much more complex.

When the bytecodes from a class file are read, they will

be interpreted, as they are needed. Interpreting

means that each bytecode is translated into one or

more native processor instructions, which are passed

to the CPU for execution. This delivers sub-optimal

performance for two main reasons:

1. Each time a bytecode is read it has to be interpreted

as if it was the first time it is being used. No attempt

is made to cache the native instructions.

2. Each bytecode is treated in isolation, so no

optimizations are made based on sequences of

instructions (as is performed by static compilation).

There are many simple (and complex) optimizations

that the interpreter does not use such as dead-code

elimination and loop unrolling.

Clearly, this is not the most efficient way to execute

bytecodes on the JVM and will give much lower

performance than statically compiled code. To

alleviate this problem shortly after Java was released a

new, improved virtual machine was developed called

Hotspot. Hotspot profiles the bytecodes of the

application as they are executed, looking for sections

of code that are used repeatedly (hot spots in the code

path, hence the name). As an example, code running

in a loop, especially if it is a loop with many iterations,

is quickly identified as a hotspot. The JVM can then

compile the bytecodes of the hotspot section using a

more traditional (think C and C++) back-end compiler.

This is adaptive compilation using a just-in-time (JIT)

compiler. The JIT can perform optimizations as the

code is compiled. This compiled code can also be

cached so that subsequent iterations of a loop use the

stored code rather than interpreting each bytecode or

recompiling the code of the loop each time.

4

Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

If we look at a typical performance profile for an

application running on a traditional JVM we will

see something like this:

When the application starts, it is running in interpreted

mode, so much slower than code that has been

compiled. As the application executes sequences of

bytecodes the JVM profiles and compiles the hotspots,

which then execute much more quickly. The curve of

the graph demonstrates the classic warm-up phase of

a Java application. There are also noticeable dips in

performance both during warm up and even when a

steady state has been reached. Many of these are

due to GC pauses; something else that Azul Platform

Prime drastically reduces through the use of the C4 GC

algorithm.

The obvious question many people ask is, “Why can’t

we use static compilation for Java? Wouldn’t that solve

the whole interpreting performance problem?”

To answer that question, we must delve deeper into

how adaptive compilation works in the JVM.

One of the most common optimizations used by

compilers is method inlining. When a method is

called, a new stack frame needs to be created,

parameters pushed, and a jump performed to the

code at the start of the method. This overhead can be

avoided by taking the instructions of the method and

placing them where the method call takes place (there

is a little more to it than this as the method parameters

need to be mapped correctly).

Although Java is a statically-typed language (and

therefore the JVM has been designed for this), classes

can be loaded dynamically at runtime. With static

compilation, the compiler must be very conservative

about method inlining since it is often unable to

guarantee that the code for the method it inlines is the

actual code that will be executed at runtime. Static

compilation will typically only inline final methods since

they cannot be overridden. A JIT compiler compiles

the code when the application is running; the JVM

knows exactly which classes are loaded and so can use

method-inlining anywhere it is useful. Similarly, classes

are not initialized at the same time they are loaded.

Initialization only happens when a new object of that

type is instantiated, a static field of the class is

referenced, or a static method of the class is called.

Static compilation must assume that all classes are

uninitialized and place checks into the generated

machine code. This leads to a considerable

degradation in performance over machine code

produced by a JIT, which knows precisely which

classes are initialized.

JIT compilers are also able to perform what is called

speculative optimizations that are not possible with

static compilation. Let’s look at an example of this.

We will use the “path never taken” example, using the

code below

int computeMagnitude(int value) {

if (value > 10)

bias = computeBias(value);

else

bias = 1;

return Math.log10(bias + 99);

}

In this code, we may have a situation where passing a

value that is greater than ten is where we have to deal

with some very unusual condition. Under normal

circumstances, the value will always be less than, or

equal to ten. With statically compiled code, the

compiler must compile the code as it is written so the

Math.log10() method must be called every time. The

JVM, however, profiles the code as it is being run in

interpreted mode so has a clearer picture of what is

actually happening. The JIT can identify that, so far,

the value has never been greater than ten. The code it

compiles will actually be as shown below

int computeMagnitude(int value) {

if (value > 10)

uncommonTrap();

return 2;

}

5

Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

Clearly, the code generated will be more efficient

because there is no longer a call to Math.log10(). In

the event that the value is greater than ten, the

uncommontrap() method is called, which will cause the

JVM to abandon the compiled code (because it is now

incorrect) and revert to interpreting the bytecodes.

This is referred to as a deoptimization and explains

some of the dips in performance on the graph on the

previous page, especially during the warm-up phase.

To improve things further, the JVM uses two JITs,

sometimes referred to as client and server but more

often as C1 and C2. The reason for having two JITs is

that they have different performance profiles. The C1

JIT is designed to generate code at the optimum level

of performance as quickly as possible, whereas the C2

JIT will take longer to generate code. The code

generated by the C2 JIT will be more heavily optimised

so give a better, overall, level of application

performance. Since Java SE 6 the JVM has had the

ability to do ‘tiered compilation’. This uses the C1 JIT

when the application starts to improve performance

rapidly and then switches to the C2 JIT to improve the

speed of the application further.

Modern Processor Design

The Intel x86 architecture dates all the way back to the

8086 processor launched in 1978, but the first real x86

32-bit processor was the 80386 launched in 1985. In

the early 2000s, the switch was made to 64-bit

processors, and the x86 architecture became the x64

(although the base instruction set remained essentially

the same).

Over thirty years the x86/x64 architectures have

become the dominant processor architecture in

laptops, workstations and most servers. During this

time there have been many improvements to the

design. Initially, the focus was on increased clock

speed: execute the same instructions faster. About

fifteen years ago clock speeds reached a plateau due

to the physical problems of dissipating the amount of

heat generated by the processor (air cooling with fans

just isn’t efficient enough, and people don’t really want

water cooled laptops or workstations).

To take advantage of Moore’s law, which predicts the

rapidly increasing density of transistors in a given

amount of space on the processor, chip designers

turned to increasing the number of processing units on

a physical chip. This has led to multi-core processors

as we see in almost all computers today.

The other area that chip designers have been working

on to improve overall performance is looking at how to

do things on the processor (“in silicon”) using a single

instruction rather than a sequence of instructions. With

a greater number of transistors to use it has become

possible to provide a larger number of increasingly

sophisticated instructions (compare that

the original 8086 processor, which had less than a

hundred instructions to the most recent x64

processors, which have over seven hundred).

It is also possible to increase the size of the registers

used from 32 or 64 bits (the size of a processor word)

all the way up to 512 bits in the latest Skylake

processors. These exceptionally wide registers are

used to hold several data words at the same time and

can be used for vector processing, which uses single

instruction-multiple data (SIMD) instructions.

However, having a processor that provides all these

facilities will not improve application performance

unless the code generated by the JIT compiler is able

to generate code to use them.

The LLVM Compiler Project

Azul has always been focused on improving the

performance of the JVM with the goal of making your

applications perform better and more reliably. Initially,

this took the form of replacing the garbage collector

6

Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

(GC) in the JVM with a different design called the

Continuous Concurrent Compacting Collector (C4).

Having solved the problems of GC, Azul turned their

attention to how to improve the performance of JIT

compilation and eliminating, as far as possible, the

warm-up time of an application.

The existing C2 compiler was written at the end of the

1990s. Attempts to add new optimizations and

improve existing ones quickly made it clear that the

design of the C2 JIT was just not adequate to allow

continuous incremental inclusion of new features.

What was needed was a more modular approach to

the construction of the compiler.

To address this need, Azul selected the LLVM project

as a starting point for our new JIT compiler for Azul

Platform Prime.

The LLVM compiler infrastructure project (formerly

Low-Level Virtual Machine) was started in 2000 at the

University of Illinois at Urbana–Champaign. It is a

“collection of modular and reusable compiler and tool

chain technologies” used to develop compiler front

ends and back ends. LLVM is released under an open-

source license and is used and supported by a number

of high-profile companies such as Apple (used in all its

Mac OS and iOS development tools), Sony (in the SDK

for the PS4), Intel and Nvidia, among many others.

Having input from engineers from these companies as

well as many others made it a natural choice for Azul to

use to start building a new JIT for the JVM. However,

taking the code from the LLVM project was just the

start. Work was required in terms of adapting it to

work in a managed runtime environment. The

compiler needs to work in conjunction with the

garbage collector and understand how to deal with

safe points. It was also necessary to look at how the

compiler would address the dynamic nature of code

replacement in the JVM, which is not something that

needs to be handled by a static compiler. Having

enhanced the code to work in a dynamic, managed

environment, Azul followed the open source principle

and pushed the changes back to the LLVM project so

they would be freely available.

The Falcon JIT Compiler

The new JIT compiler in Azul Platform Prime, using the

code from the LLVM project, is called Falcon. The

name was selected because the Falcon is the fastest

animal on the planet; the Peregrine Falcon has been

recorded diving at a speed of over 200 miles per hour!

Using LLVM, a modular and a well-supported open-

source project, means Azul Platform Prime can quickly

and easily take advantage of optimizations for modern

hardware. Let’s look at an example of how Java code

can be optimized in different ways.

private int sumArray(int[] data) {

int sum = 0;

for (int i = 0; i < data.length; i++)

sum += data[i];

return sum;

}

The code above is simple and existing JIT compilers

can easily recognize that vector processing instructions

(like AVX on Intel) can be used. By taking advantage of

SIMD processing, the performance of this method can

be significantly improved.

However, let’s look at a slightly more complex

example.

private void addArraysIfEven(int[] a, int[] b) {

if (a.length != b.length)

throw new RuntimeException(“Length mismatch”);

for (int i = 0; i < a.length; i++)

if ((b[i] & 0x1) == 0)

a[i] += b[i];

}

In this case, the application of vector processing

instructions is not straightforward and traditional JIT

compilers will not use those instructions but will use

more basic techniques such as loop unrolling to

7

Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

perform multiple operations for each iteration of the

loop.

Because Falcon is based on LLVM, it can immediately

benefit from optimization improvements made in that

project. If we look at the instructions generated by

Falcon for this code we see the following:

The sections highlighted in red show the AVX2

instructions generated by Falcon for the example

method (here we used a Broadwell E5-2690 v4

processor). AVX2 instructions work on 256-bit

registers, so each instruction group is able to process

eight elements of the array. Given the way these

instructions work, the effect is to make the processor

(assuming a clock speed of 2.5GHz) appear to be

running at 9GHz for this method.

The vectorization code is also executed four times

enabling us to process 32 array values for each

iteration of the loop.

The Falcon compiler also supports the newer AVX-512

instructions so, had this been run on an Intel Skylake

processor the number of array elements processed per

iteration would have been doubled.

This is only one example of how the Falcon JIT

compiler can generate better performing code. As

further optimizations become available through the

LLVM project, these will be quickly integrated into

Falcon, as well as improvements made by Azul’s own

engineers.

ReadyNow! Eliminating JVM Warm-Up

Looking back at the traditional JVM performance

graph earlier, one of the fundamental differences to

the perfect graph is the need for the JVM to profile the

application, identify methods to compile and then

compile them. This overhead is what leads to the

warm-up time associated with Java applications

running on traditional JVMs.

Many people ask why it is not possible to just take a

snapshot of the compiled code the JVM is using when

it gets to a steady state and reload it when the

application is started again. The specification for the

JVM imposes strict rules on how classes and methods

are used, specifically around class loading and

initialization. These restrictions, along with the

possibility of method implementations changing

between application invocations makes the reuse of

compiled code impractical.

However, ReadyNow!, which is included in Azul

Platform Prime, is able to do things that can almost

eliminate application warm-up time.

We already know that the JVM profiles an application

as it runs to identify methods to compile. To avoid the

delay associated with warm-up, ReadNow! records

profiling data from a running application into a file,

specifically:

• A list of classes the JVM currently has loaded.

• A list of classes the JVM has initialized.

• Instruction profile data. This includes things such as

whether a particular call has raised a

NullPointerException, whether an array access has gone

out of bounds and so on.

• Speculative optimization failure data that highlight

optimization paths to avoid.

When the application is started again, the file

containing the ReadyNow! profile can be used as input

to the JVM. ReadyNow! reads this information and

pre-compiles required methods at application start-up.

ReadyNow! uses the information in the profile log to

speculatively load all the classes that are required.

8

Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

ReadyNow! will also initialize classes that do not

require running code to be initialized. (One of the

restrictions of the JVM specification is that classes can

only be initialized via the instantiation of an object of

that type or access to a static field or method of the

class). Using this eager-loading and eager initialization

of classes allows for the proactive compilation of most

methods before the main() method of the application is

run.

The overall effect of this is very similar to reloading a

compiled code snapshot but with a number of

significant advantages. One of those advantages is that

ReadyNow! can benefit from far longer sampling

periods than used by the JIT resulting in far fewer

deoptimizations (typically as much as 80% less).

Conclusions

At the start of this paper, we saw what a perfect

performance graph would look like and how a

traditional JVM graph differed from that.

The graph below shows how the earlier example can

be improved by the use of features in Azul Platform

Prime

.

• The Falcon replacement for the C2 JIT helps to improve

the overall speed of the application by applying

optimizations not used before, such as the use of

modern processor instructions and vector processing in

more complex situations.

• ReadyNow! almost eliminates the problems of

application warm-up and deoptimizations through the

recording and reuse of JIT profiling information from

previous runs of the application.

• The C4 GC (not covered in this paper) helps to

eliminate pauses caused by garbage collection needing

to suspend application threads while objects are

relocated.

As you can see from this graph, not only does Azul

Platform Prime get JVM performance very close to the

perfect profile, it also raises the level of performance

available to your application above that of traditional

JVMs.

For additional information:

• Azul Platform Prime product overview

• ReadyNow! Data sheet

• C4 white paper

• Azul Platform Prime eval download page

Contact Azul

To discover how Azul Platform Prime

can improve scalability, consistency

and performance of all your Java

deployments, contact:

385 Moffett Park Drive, Suite 115

Sunnyvale, CA 94089 USA

 +1.650.230.6500

www.azul.com

info@azul.com

https://azul.com/products/prime/
https://www.azul.com/resources-hub/data-sheets/ds-readynow
https://www.azul.com/resources-hub/whitepapers/azul-white-paper-the-continuously-concurrent-compacting-collector-c4
https://azul.com/products/prime/trial-download/
http://www.azul.com/

	Technology Whitepaper
	Azul Prime: Java At Speed. A JVM Optimized For Modern Hardware

